CAREER: Evaluation of machine learning algorithms for understanding and predicting adaptation to multivariate environments with a Model Validation Program (MVP)

职业:通过模型验证程序 (MVP) 评估机器学习算法,以理解和预测对多变量环境的适应

基本信息

  • 批准号:
    2043905
  • 负责人:
  • 金额:
    $ 145.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Environmental change can be rapid and involve multiple aspects of the environment changing at the same time, such as warming and increased disease pressure. Rapid environmental change threatens the productivity of aquaculture and crops on which humans depend. Predicting organisms' vulnerabilities to rapid and multifactor environmental change, however, is a major scientific challenge. A hurdle to addressing this challenge arises from the complex and non-intuitive ways that organisms adapt, through changes at the level of the DNA sequence, to many environmental stresses at the same time. Thus, there is a need for new approaches to understand and predict adaptation in multivariate environments. To address this need, this project integrates research and education with a Model Validation Program (MVP). The research is developing and evaluating Machine Learning Algorithms (MLAs) for understanding and predicting adaptation of organisms to multivariate environments from their DNA sequences. To evaluate MLAs, this research combines both data simulation and an empirical test in the field with the Eastern Oyster, which provide important ecosystem services and support a multi-million dollar industry. For oysters, this research is studying how temperature, disease pressure, and salinity interact with evolutionary history to determine fitness in the field. This research advances efforts toward addressing the major scientific challenge of predicting adaptation in complex environments by integrating concepts across the frontiers of marine, evolutionary, and statistical sciences in a new way. Machine learning and model validation are not traditionally taught in the marine and environmental sciences, but are becoming increasingly relevant to these fields. As part of a broader education program, this research is developing MVP Learning Modules for high school students and undergraduates, which help students build the foundational knowledge they need to critically evaluate and apply models. Modules are being disseminated to hundreds of students in the greater Boston area and are being made available online for widespread use. The MVP mentoring program is training graduate students, undergraduates, and high school students in marine evolutionary ecology, statistical genomics, and machine learning. This research addresses a pressing societal need to more informatively match genotypes to environments for restoration, farming, and assisted gene flow efforts. Results are being disseminated to stakeholders in the oyster industry.The goal of this research is to evaluate if MLAs, which can model non-linearities, can be used to understand and predict adaptation to multivariate environments under a wide range of scenarios. In Objective 1, the Principal Investigator (PI) is creating simulated datasets with different aspects of realism, and using them to evaluate and refine the MLAs. This novel set of simulations is studying genome evolution under high gene flow in complex, multivariate environments. In Objective 2, the PI is building on their expertise with the Eastern oyster to evaluate the MLAs in a field setting. The PI is first developing a comprehensive seascape genomic dataset and using it to train MLAs to predict an individual's multivariate environment based on a single nucleotide polymorphism genotype. Then, the PI is testing if the MLA prediction can predict the fitness of different genotypes from across the species range when raised in common garden field conditions. In Objective 3, the PI is integrating research and education by using the data obtained from Objs. 1 and 2 to develop a series of original "MVP Learning Modules" with interactive web apps for persons at different levels of understanding, using the relatable example of an oyster restoration project. This research lays the foundation for future studies by producing datasets that could become classical examples for developing and benchmarking innovative modeling approaches.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
环境变化可能是迅速的,涉及环境的多个方面同时变化,例如变暖和疾病压力增加。快速的环境变化威胁着人类赖以生存的水产养殖和农作物的生产力。然而,预测生物体对快速和多因素环境变化的脆弱性是一项重大的科学挑战。解决这一挑战的一个障碍来自于生物体通过DNA序列水平的变化同时适应许多环境压力的复杂和非直观的方式。因此,需要新的方法来理解和预测在多变量环境中的适应。为了满足这一需求,该项目将研究和教育与模型验证计划(MVP)相结合。该研究正在开发和评估机器学习算法(MLAs),用于从DNA序列中理解和预测生物体对多变量环境的适应。为了评估MLAs,本研究将数据模拟和实地实证测试与东方牡蛎相结合,东方牡蛎提供重要的生态系统服务并支持数百万美元的产业。对于牡蛎,这项研究正在研究温度,疾病压力和盐度如何与进化历史相互作用,以确定该领域的适应性。这项研究通过以一种新的方式整合海洋,进化和统计科学前沿的概念,推动了在复杂环境中预测适应性的重大科学挑战。机器学习和模型验证在海洋和环境科学中传统上没有教授,但与这些领域的关系越来越密切。作为更广泛的教育计划的一部分,这项研究正在为高中生和本科生开发MVP学习模块,帮助学生建立批判性评估和应用模型所需的基础知识。正在向大波士顿地区的数百名学生分发这些单元,并在网上提供以供广泛使用。MVP指导计划正在对研究生、本科生和高中生进行海洋进化生态学、统计基因组学和机器学习方面的培训。这项研究解决了一个紧迫的社会需求,以更多的信息匹配基因型的环境恢复,农业和辅助基因流的努力。研究结果正在向牡蛎产业的利益相关者传播。本研究的目的是评估MLAs是否可以用于理解和预测在各种情景下对多元环境的适应。在目标1中,主要研究者(PI)正在创建具有不同现实主义方面的模拟数据集,并使用它们来评估和改进MLA。这组新的模拟正在复杂的多变量环境中研究高基因流下的基因组进化。在目标2中,PI正在利用他们在东部牡蛎方面的专业知识,在实地环境中评估MLAs。PI首先开发了一个全面的海景基因组数据集,并使用它来训练MLA,以基于单核苷酸多态性基因型预测个体的多变量环境。然后,PI正在测试MLA预测是否可以预测在普通花园田间条件下饲养时不同基因型在整个物种范围内的适合度。在目标3中,PI正在利用从Objs获得的数据将研究和教育结合起来。1和2开发了一系列原创的“MVP学习模块”与互动的网络应用程序的人在不同的理解水平,使用相关的例子牡蛎恢复项目。该研究通过生成数据集为未来的研究奠定了基础,这些数据集可能成为开发和基准测试创新建模方法的经典示例。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Simulation Tests of Methods in Evolution, Ecology, and Systematics: Pitfalls, Progress, and Principles
进化论、生态学和系统学方法的模拟测试:陷阱、进展和原则
  • DOI:
    10.1146/annurev-ecolsys-102320-093722
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lotterhos, Katie E.;Fitzpatrick, Matthew C.;Blackmon, Heath
  • 通讯作者:
    Blackmon, Heath
Development and Evaluation of High-Density SNP Arrays for the Eastern Oyster Crassostrea virginica
  • DOI:
    10.1007/s10126-022-10191-3
  • 发表时间:
    2023-01-09
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Guo, Ximing;Puritz, Jonathan B.;Wilbur, Ami
  • 通讯作者:
    Wilbur, Ami
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kathleen Lotterhos其他文献

Kathleen Lotterhos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kathleen Lotterhos', 18)}}的其他基金

RCN: Evolution in Changing Seas
RCN:海洋变化中的进化
  • 批准号:
    1764316
  • 财政年份:
    2018
  • 资助金额:
    $ 145.99万
  • 项目类别:
    Standard Grant
Testing the tests: a predictive framework to guide genome scans for locally adapted traits
测试测试:指导基因组扫描以寻找适应当地特征的预测框架
  • 批准号:
    1655701
  • 财政年份:
    2017
  • 资助金额:
    $ 145.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Does ocean acidification induce a methylation response that affects the fitness of the next generation in oysters?
合作研究:海洋酸化是否会引起影响牡蛎下一代健康的甲基化反应?
  • 批准号:
    1635423
  • 财政年份:
    2017
  • 资助金额:
    $ 145.99万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于重要农地保护LESA(Land Evaluation and Site Assessment)体系思想的高标准基本农田建设研究
  • 批准号:
    41340011
  • 批准年份:
    2013
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

HSI Implementation and Evaluation Project: Undergraduate Research Experiences in Machine Learning for First Generation Students
HSI 实施和评估项目:第一代学生的机器学习本科研究经验
  • 批准号:
    2345361
  • 财政年份:
    2024
  • 资助金额:
    $ 145.99万
  • 项目类别:
    Continuing Grant
Cardiovascular risk from comprehensive evaluation of the CT calcium score exam
CT钙评分检查综合评估心血管风险
  • 批准号:
    10853742
  • 财政年份:
    2023
  • 资助金额:
    $ 145.99万
  • 项目类别:
Quantitative Study of Public Accountability based on Behavioral Public Administration: Analyzing Evaluation Reports Using Machine Learning and Experimental Method
基于行为公共管理的公共问责量化研究:利用机器学习和实验方法分析评估报告
  • 批准号:
    23K18770
  • 财政年份:
    2023
  • 资助金额:
    $ 145.99万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Active Evaluation of Machine Learning Models
机器学习模型的主动评估
  • 批准号:
    23H03456
  • 财政年份:
    2023
  • 资助金额:
    $ 145.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
In vivo Evaluation of Lymph Nodes Using Quantitative Ultrasound
使用定量超声对淋巴结进行体内评估
  • 批准号:
    10737152
  • 财政年份:
    2023
  • 资助金额:
    $ 145.99万
  • 项目类别:
The development of a systematic approach to harness real-world evidence for the evaluation of medication safety and effectiveness in children
开发一种系统方法来利用现实世界的证据来评估儿童用药的安全性和有效性
  • 批准号:
    10739628
  • 财政年份:
    2023
  • 资助金额:
    $ 145.99万
  • 项目类别:
Components of emergency department pediatric readiness associated with short- and long-term survival among children: a mixed methods evaluation
与儿童短期和长期生存相关的急诊儿科准备的组成部分:混合方法评估
  • 批准号:
    10731344
  • 财政年份:
    2023
  • 资助金额:
    $ 145.99万
  • 项目类别:
Dynamic Evaluation of Neural Mechanisms for Affective Touch: Pathways for Touch-induced Pleasantness and Pain Modulation
情感触摸神经机制的动态评估:触摸引起的愉悦感和疼痛调节的途径
  • 批准号:
    10660199
  • 财政年份:
    2023
  • 资助金额:
    $ 145.99万
  • 项目类别:
Cardiovascular risk from comprehensive evaluation of the CT calcium score exam
CT钙评分检查综合评估心血管风险
  • 批准号:
    10667803
  • 财政年份:
    2023
  • 资助金额:
    $ 145.99万
  • 项目类别:
A multi-omic and integrative longitudinal evaluation of the role of lipid, antioxidant, and osmoprotectant metabolites in the genitourinary syndrome of menopause by race and ethnicity.
按种族和民族对脂质、抗氧化剂和渗透保护代谢物在更年期泌尿生殖综合征中的作用进行多组学和综合纵向评估。
  • 批准号:
    10643444
  • 财政年份:
    2023
  • 资助金额:
    $ 145.99万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了