Collaborative Research: Quantifying Watershed Dynamics in Snow-Dominated Mountainous Karst Watersheds Using Hybrid Physically Based and Deep Learning Models
合作研究:使用基于物理和深度学习的混合模型量化以雪为主的山地喀斯特流域的流域动态
基本信息
- 批准号:2044051
- 负责人:
- 金额:$ 28.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Karst aquifers form in regions underlain by highly soluble rock formations, such as limestone, and serve as the primary drinking water source for about a quarter of the world’s population. These aquifers are characterized by complex groundwater recharge, storage, and flow patterns in sinkholes, pores, fractures, and conduits. In many mountainous areas of the western U.S. and worldwide that host karst aquifers, most of the annual precipitation falls in the winter as snow. In these snow-dominated karst watersheds, snowmelt recharges aquifers that sustain streamflow in summer when precipitation is scarce and water demand is high. These watersheds are sensitive to year-to-year variations and long-term trends in precipitation and temperature. This creates challenges for sustainable water resource management particularly when a quantitative understanding of mountainous karst watershed response to climate variability is lacking. Such knowledge gaps exist due to complex recharge and discharge processes that occur because of topographical and geological heterogeneities inherent in these watersheds. This project will overcome these limitations and provide a sound scientific basis for improved water resources management. Funding will support both graduate and undergraduate research at multiple universities. Through outreach and educational activities, the project will also engage local stakeholders, the general public, and K-12 students.The overarching goal of the proposed research is to understand and predict hydrologic responses of snow-dominated mountainous karst aquifers. The three-year project will integrate a spatially distributed, physically based snowmelt model with a data-driven, deep learning model that represents the highly complex karst aquifer system. Field observational and geochemical data sets (including streamflow, and ions and isotopes in stream and spring water) will be collected at various spatial and time scales to identify recharge and discharge characteristics, while also testing the predictive capability and physical representativeness of the deep learning model. Specifically, the project will (1) quantify the spatiotemporal groundwater discharge and streamflow response to snowmelt/rainfall events with varying intensity and duration, (2) determine how interannual climate variability and watershed physical properties influence hydrologic behavior, and (3) test the combined physically based and data-driven modeling approach in different locations and climate conditions. The outcomes will lead to improved understanding of how snow-dominated mountainous karst watersheds respond to climate variability and provide insight into the robustness of the modeling approach for forecasting or transferability to other regions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
岩溶含水层形成于石灰岩等易溶岩层的下方,是世界上约四分之一人口的主要饮用水源。这些含水层的特点是复杂的地下水补给,储存,并在天坑,孔隙,裂缝和管道流动模式。在美国西部的许多山区和世界各地的岩溶含水层,大部分的年降水量福尔斯下降在冬季的雪。在这些以雪为主的喀斯特流域,融雪为含水层补充水分,在夏季降水稀少且需水量高的情况下维持径流。这些流域对降水量和温度的逐年变化和长期趋势很敏感。这给可持续水资源管理带来了挑战,特别是在对山区岩溶流域对气候变化的反应缺乏定量了解的情况下。由于这些流域固有的地形和地质不均匀性,补给和排泄过程复杂,因此存在这种知识差距。该项目将克服这些限制,为改进水资源管理提供可靠的科学基础。资金将支持多所大学的研究生和本科生研究。通过推广和教育活动,该项目还将吸引当地利益相关者,公众和K-12学生。拟议研究的总体目标是了解和预测以雪为主的山区岩溶含水层的水文响应。这个为期三年的项目将把一个空间分布的、基于物理的融雪模型与一个代表高度复杂的岩溶含水层系统的数据驱动的深度学习模型相结合。现场观测和地球化学数据集(包括径流,以及溪流和泉水中的离子和同位素)将在不同的空间和时间尺度上收集,以确定补给和排放特征,同时还测试深度学习模型的预测能力和物理代表性。具体而言,该项目将(1)量化时空地下水排放和径流对不同强度和持续时间的融雪/降雨事件的响应,(2)确定年际气候变化和流域物理特性如何影响水文行为,以及(3)在不同地点和气候条件下测试基于物理和数据驱动的组合建模方法。研究结果将有助于更好地理解积雪为主的山区岩溶流域如何应对气候变化,并深入了解建模方法的稳健性,以进行预测或可转移到其他地区。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hybrid Physically Based and Deep Learning Modeling of a Snow Dominated, Mountainous, Karst Watershed
- DOI:10.1029/2021wr030993
- 发表时间:2022-03
- 期刊:
- 影响因子:5.4
- 作者:Tianfang Xu;Q. Longyang;C. Tyson;R. Zeng;B. Neilson
- 通讯作者:Tianfang Xu;Q. Longyang;C. Tyson;R. Zeng;B. Neilson
Effects of Meteorological Forcing Uncertainty on High-Resolution Snow Modeling and Streamflow Prediction in a Mountainous Karst Watershed
- DOI:10.1016/j.jhydrol.2023.129304
- 发表时间:2023-02
- 期刊:
- 影响因子:6.4
- 作者:C. Tyson;Q. Longyang;B. Neilson;R. Zeng;Tianfang Xu
- 通讯作者:C. Tyson;Q. Longyang;B. Neilson;R. Zeng;Tianfang Xu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tianfang Xu其他文献
Learning Relational Kalman Filtering
学习关系卡尔曼滤波
- DOI:
10.1609/aaai.v29i1.9633 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Jaesik Choi;Eyal Amir;Tianfang Xu;A. Valocchi - 通讯作者:
A. Valocchi
Utilizing Visual Attention for Cross-Modal Coreference Interpretation
利用视觉注意力进行跨模态共指解释
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
D. Byron;Thomas Mampilly;V. Sharma;Tianfang Xu - 通讯作者:
Tianfang Xu
JLAMCNet: Joint Loss and Array Mismatch Compensation Network for Single Snapshot DoA Estimation
- DOI:
10.1007/s00034-025-03126-5 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:2.000
- 作者:
Qiang Guo;Boyuan Tang;Tianfang Xu;Vladimir Tuz - 通讯作者:
Vladimir Tuz
Development of a point-source model to improve simulations of manure lagoon interactions with the environment.
开发点源模型以改进粪便泻湖与环境相互作用的模拟。
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:8.7
- 作者:
Noah Rudko;R. Muenich;Margaret Garcia;Tianfang Xu - 通讯作者:
Tianfang Xu
An LSTM approach to deciphering irrigation operations from remote sensing and groundwater levels records
一种从遥感和地下水位记录中解读灌溉作业的长短期记忆网络(LSTM)方法
- DOI:
10.1016/j.agwat.2024.109273 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:6.500
- 作者:
Shiqi Wei;Tianfang Xu - 通讯作者:
Tianfang Xu
Tianfang Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: BoCP-Implementation: Quantifying the response of biodiverse freshwater ecosystems to abrupt and progressive environmental change
合作研究:BoCP-实施:量化生物多样性淡水生态系统对突然和渐进的环境变化的响应
- 批准号:
2325895 - 财政年份:2024
- 资助金额:
$ 28.49万 - 项目类别:
Standard Grant
Collaborative Research: Sediment and Stability: Quantifying the Effect of Moraine Building on Greenland Tidewater Glaciers
合作研究:沉积物和稳定性:量化冰碛建筑对格陵兰潮水冰川的影响
- 批准号:
2234522 - 财政年份:2024
- 资助金额:
$ 28.49万 - 项目类别:
Standard Grant
Collaborative Research: Sediment and Stability: Quantifying the Effect of Moraine Building on Greenland Tidewater Glaciers
合作研究:沉积物和稳定性:量化冰碛建筑对格陵兰潮水冰川的影响
- 批准号:
2234523 - 财政年份:2024
- 资助金额:
$ 28.49万 - 项目类别:
Standard Grant
Collaborative Research: Sediment and Stability: Quantifying the Effect of Moraine Building on Greenland Tidewater Glaciers
合作研究:沉积物和稳定性:量化冰碛建筑对格陵兰潮水冰川的影响
- 批准号:
2234524 - 财政年份:2024
- 资助金额:
$ 28.49万 - 项目类别:
Standard Grant
Collaborative Research: BoCP-Implementation: Quantifying the response of biodiverse freshwater ecosystems to abrupt and progressive environmental change
合作研究:BoCP-实施:量化生物多样性淡水生态系统对突然和渐进的环境变化的响应
- 批准号:
2325892 - 财政年份:2024
- 资助金额:
$ 28.49万 - 项目类别:
Standard Grant
Collaborative Research: BoCP-Implementation: Quantifying the response of biodiverse freshwater ecosystems to abrupt and progressive environmental change
合作研究:BoCP-实施:量化生物多样性淡水生态系统对突然和渐进的环境变化的响应
- 批准号:
2325891 - 财政年份:2024
- 资助金额:
$ 28.49万 - 项目类别:
Standard Grant
Collaborative Research: Sediment and Stability: Quantifying the Effect of Moraine Building on Greenland Tidewater Glaciers
合作研究:沉积物和稳定性:量化冰碛建筑对格陵兰潮水冰川的影响
- 批准号:
2234520 - 财政年份:2024
- 资助金额:
$ 28.49万 - 项目类别:
Standard Grant
Collaborative Research: BoCP-Implementation: Quantifying the response of biodiverse freshwater ecosystems to abrupt and progressive environmental change
合作研究:BoCP-实施:量化生物多样性淡水生态系统对突然和渐进的环境变化的响应
- 批准号:
2325893 - 财政年份:2024
- 资助金额:
$ 28.49万 - 项目类别:
Standard Grant
Collaborative Research: BoCP-Implementation: Quantifying the response of biodiverse freshwater ecosystems to abrupt and progressive environmental change
合作研究:BoCP-实施:量化生物多样性淡水生态系统对突然和渐进的环境变化的响应
- 批准号:
2325894 - 财政年份:2024
- 资助金额:
$ 28.49万 - 项目类别:
Standard Grant
COLLABORATIVE RESEARCH: Quantifying the effects of variable light and iron on the nitrate assimilation isotope effect of phytoplankton
合作研究:量化可变光和铁对浮游植物硝酸盐同化同位素效应的影响
- 批准号:
2333913 - 财政年份:2023
- 资助金额:
$ 28.49万 - 项目类别:
Standard Grant