CAREER: Combining Electrode Engineering with Electrochemical Modeling to Enable Atmospheric CO2 Capture
职业:将电极工程与电化学建模相结合,实现大气二氧化碳捕获
基本信息
- 批准号:2045032
- 负责人:
- 金额:$ 53.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The capture of carbon dioxide (CO2) directly from the atmosphere is emerging as a potential approach to climate change mitigation. However, the rapid separation and purification of CO2 from air can be very energy-intensive because of its low concentration (400 ppm). The development of highly energy-efficient CO2 capture technology will enhance the sustainability, affordability, and commercial appeal of capturing CO2 and converting it into useful chemicals and products. Most incumbent CO2 capture technologies run on heat, which typically requires burning fossil fuels. Heat-based CO2 capture methods also face a fundamental conversion efficiency limit in using heat for the work of separation. In contrast, CO2 capture using electrical rather than thermal energy is attractive because it does not face this efficiency limit. Moreover, it could be run using renewable energy conversion technology, which is increasingly available and inexpensive. This project will develop a new approach to energy-efficient CO2 separation that uses electro-active organic molecules attached to carbon electrodes. Polarizing these electrodes in an aqueous solution causes reversible changes in the pH of the solution, which enables CO2 separation. CO2 will be selectively absorbed in the form of carbonate ions under alkaline conditions and then released as a pure gas under acidic conditions. Experimental and modeling techniques will be used to understand how both the chemical composition of the electrode and its integration into an electrochemical flow cell influence the rate and energy efficiency of the overall separation process. Further, this project will engage Michigan residents in informal discussions and hands-on scientific demonstrations highlighting the need for and benefits of CO2 capture and utilization technology. With support from both the Interfacial Engineering and Electrochemical Systems programs, this project aims to advance a new way of using carbon electrodes, chemically functionalized with organic moieties, for energy-efficient electrochemical CO2 separation. Upon electric polarization, these electrodes can either absorb protons from or release them into solution, changing its pH, and thereby providing a mechanism for reactive CO2 capture and release. The extent and reversibility of pH changes that these electrodes can achieve are key factors controlling the energy efficiency of the separation process. These factors strongly depend on the strength of the electric field that the organic moiety experiences at the electrode/electrolyte interface. A combination of electroanalytical and in operando high-resolution x-ray spectroscopic techniques will be used to develop a mechanistic understanding of proton transfer as the chemistry of the moiety and manner of its installation on carbon vary. This knowledge will be exploited to engineer electrodes that will concentrate CO2 from the air when deployed in an aqueous electrochemical flow cell. Flow cell measurements will be used to validate a physics-based model for the separation process; the model will offer an understanding of how thermodynamic and kinetic losses dictate the overall energy input and efficiency for a given separation throughput. The education plan generates public exposure to the benefits of CO2 mitigation technology by offering face-to-face exchange between the community and researchers through discovery-based learning, informal discussion, targeted hands-on demonstrations, and a research exhibit.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
直接从大气中捕获二氧化碳(CO2)正在成为减缓气候变化的一种潜在方法。然而,从空气中快速分离和净化二氧化碳可能是非常耗能的,因为它的浓度很低(400 ppm)。开发高能效的二氧化碳捕获技术将提高捕获二氧化碳并将其转化为有用的化学品和产品的可持续性、可负担性和商业吸引力。大多数现有的二氧化碳捕获技术都是靠热量运行的,这通常需要燃烧化石燃料。基于热的CO2捕集方法在使用热进行分离工作时也面临基本的转化效率限制。相比之下,使用电能而不是热能捕获CO2是有吸引力的,因为它不面临这种效率限制。此外,它可以使用可再生能源转换技术,这是越来越容易获得和便宜。该项目将开发一种新的节能CO2分离方法,该方法使用附着在碳电极上的电活性有机分子。在水溶液中极化这些电极会导致溶液pH值的可逆变化,从而实现CO2分离。CO2在碱性条件下以碳酸根离子的形式被选择性地吸收,然后在酸性条件下作为纯气体释放。实验和建模技术将用于了解电极的化学成分及其集成到电化学流通池中如何影响整个分离过程的速率和能效。此外,该项目将使密歇根州居民参与非正式讨论和实践科学演示,强调二氧化碳捕获和利用技术的必要性和好处。 在界面工程和电化学系统项目的支持下,该项目旨在推进一种使用碳电极的新方法,该碳电极用有机部分进行化学功能化,用于节能电化学CO2分离。在电极化时,这些电极可以从溶液中吸收质子或将它们释放到溶液中,改变其pH值,从而提供反应性CO2捕获和释放的机制。这些电极可以实现的pH变化的程度和可逆性是控制分离过程的能量效率的关键因素。这些因素强烈地依赖于有机部分在电极/电解质界面处经历的电场的强度。电分析和在operando高分辨率的X-射线光谱技术的组合将被用来开发质子转移的机械理解的部分和其安装在碳上的方式变化的化学。这些知识将被利用来设计电极,当部署在水性电化学流动电池中时,这些电极将从空气中浓缩CO2。流动池测量将用于验证分离过程的基于物理的模型;该模型将提供对热力学和动力学损失如何决定给定分离通量的总体能量输入和效率的理解。该教育计划通过以发现为基础的学习、非正式讨论、有针对性的实践演示和研究展览,为社区和研究人员提供面对面的交流,使公众了解二氧化碳减排技术的好处。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effect of Covalent Modification on Proton-Coupled Electron Transfer at Quinone-Functionalized Carbon Electrodes
共价修饰对醌官能化碳电极质子耦合电子转移的影响
- DOI:10.1021/acs.jpcc.2c06356
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Owhoso, Fiki V.;Modak, Sanat V.;Saha, Partha;Kwabi, David G.
- 通讯作者:Kwabi, David G.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Kwabi其他文献
David Kwabi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Kwabi', 18)}}的其他基金
Understanding Capacity Fade in Organic Flow Batteries by Combining Experiments with Modeling and Uncertainty Quantification
通过将实验与建模和不确定性量化相结合来了解有机液流电池的容量衰减
- 批准号:
2033969 - 财政年份:2020
- 资助金额:
$ 53.59万 - 项目类别:
Standard Grant
相似国自然基金
RNA结合蛋白hnRNPD通过调控与细胞死亡相关基因MAP4K4的可变剪接介导的细胞周期调控促进肾母细胞瘤细胞增殖的机制研究
- 批准号:JCZRYB202501327
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
母乳中骨桥蛋白(OPN)调控钙结合蛋白介导多形核髓系抑制性细胞防治早产儿支气管肺发育不良
- 批准号:JCZRLH202500785
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
结合粒子滤波空间轨迹优化的炸药装填机器人图像多尺度特征视觉伺服控制研究
- 批准号:JCZRQN202500451
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
水凝胶改性陶瓷人工关节牢固结合界面的构筑与减磨润滑机理研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
RNA结合蛋白PTBP1调控UCP2抑制滋养层细胞氧化应激在子痫前期中的作用及分子机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于强化学习与深度学习结合的分类算法动态优化研究与示范应用
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
新质生产力背景下大数据赋能医商保结合增值服务模式构建及实践
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRF-16-KPU7K1B结合YBX1调控LCN2 mRNA的m5C修饰促进结直肠癌对伊立替康获得性耐药
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
OPA3结合PI3K降低其磷酸化以介导脂代谢抑制结直肠癌细胞对贝伐珠单抗耐药的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
拉曼光谱探针结合MCR-ALS精准切除子宫内膜异位症病灶的临床研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Combining eye-tracking and comparative judgments to identify proficiency differences for more effective language learning
结合眼动追踪和比较判断来识别熟练程度差异,以实现更有效的语言学习
- 批准号:
24K16140 - 财政年份:2024
- 资助金额:
$ 53.59万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
STEM Teacher Effectiveness and Retention in High-Need Schools: Combining Equity & Ecological Frameworks
高需求学校的 STEM 教师效能和保留率:结合公平
- 批准号:
2345129 - 财政年份:2024
- 资助金额:
$ 53.59万 - 项目类别:
Continuing Grant
Screening of environmentally friendly quantum-nanocrystals for energy and bioimaging applications by combining experiment and theory with machine learning
通过将实验和理论与机器学习相结合,筛选用于能源和生物成像应用的环保量子纳米晶体
- 批准号:
23K20272 - 财政年份:2024
- 资助金额:
$ 53.59万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 53.59万 - 项目类别:
Collaborative R&D
Collaborative Research:CIF:Small:Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
- 批准号:
2326905 - 财政年份:2024
- 资助金额:
$ 53.59万 - 项目类别:
Standard Grant
Combining Machine Learning Explanation Methods with Expectancy-Value Theory to Identify Tailored Interventions for Engineering Student Persistence
将机器学习解释方法与期望值理论相结合,确定针对工程学生坚持的定制干预措施
- 批准号:
2335725 - 财政年份:2024
- 资助金额:
$ 53.59万 - 项目类别:
Standard Grant
Combining structural biology and genetics to understand the function of a multi-gene family expanded in neglected human malaria parasites
结合结构生物学和遗传学来了解在被忽视的人类疟疾寄生虫中扩展的多基因家族的功能
- 批准号:
MR/Y012895/1 - 财政年份:2024
- 资助金额:
$ 53.59万 - 项目类别:
Research Grant
Risk Assuring Future Structure Critical Systems: Combining 21st Century Science with Engineering Intuition - Renewal
确保未来结构关键系统的风险:将 21 世纪科学与工程直觉相结合 - Renewal
- 批准号:
MR/Y020235/1 - 财政年份:2024
- 资助金额:
$ 53.59万 - 项目类别:
Fellowship
Collaborative Research:CIF:Small: Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
- 批准号:
2326904 - 财政年份:2024
- 资助金额:
$ 53.59万 - 项目类别:
Standard Grant
SBIR Phase I: Subseasonal Forecasting and Climate Risk Analytics Combining Physics and AI
SBIR 第一阶段:结合物理和人工智能的次季节预报和气候风险分析
- 批准号:
2335210 - 财政年份:2024
- 资助金额:
$ 53.59万 - 项目类别:
Standard Grant