CAREER: Geometric Function Theory in Several Complex Variables

职业:多个复变量的几何函数论

基本信息

  • 批准号:
    2045104
  • 负责人:
  • 金额:
    $ 42.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

This CAREER award will support the PI's investigations of various geometric and analytic problems in several complex variables and Cauchy-Riemann geometry. The objective of the research is to further the present understanding of geometric function theory in several complex variables, as well as its connections with aspects of algebraic geometry, complex geometry, dynamical systems and physics. The project will develop new methods and provide interesting research topics for graduate students and postdocs. The PI will organize a series of educational activities for students of different academic levels, as well as secondary school educators. This includes a reading and research program for high school students, a learning and teaching program for high school teachers, and an undergraduate summer school program. The PI will encourage the participation of people from underrepresented groups and underserved school districts into these activities. The programs will also provide pedagogical training opportunities for graduate students. The Bergman kernel and metric will play a prominent role in the research. In particular, the geometry of open complex spaces will be investigated in terms of their Bergman kernels and metrics. The PI will also conduct research on the regularity and rigidity problems of Cauchy-Riemann and holomorphic mappings that naturally arise in several complex variables, complex geometry, and arithmetical algebraic geometry. The methods in the research will incorporate techniques from partial differential equations, algebra, and differential geometry, in addition to complex analysis.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该职业奖将支持PI对多复变量和Cauchy-Riemann几何中各种几何和分析问题的研究。研究的目的是进一步了解几何函数理论在几个复杂的变量,以及它与代数几何,复几何,动力系统和物理方面的连接。该项目将开发新的方法,并为研究生和博士后提供有趣的研究课题。PI将为不同学术水平的学生和中学教育工作者举办一系列教育活动。这包括高中学生的阅读和研究计划,高中教师的学习和教学计划,以及本科生暑期学校计划。PI将鼓励代表性不足的群体和服务不足的学区的人参与这些活动。这些项目还将为研究生提供教学培训机会。Bergman核和度量将在研究中发挥重要作用。特别是,开放的复杂空间的几何将在其伯格曼内核和度量方面进行研究。PI还将研究Cauchy-Riemann和全纯映射的正则性和刚性问题,这些问题在多复变量,复几何和算术代数几何中自然出现。研究方法将结合偏微分方程、代数和微分几何技术以及复杂的分析。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rigidity of Mappings Between Degenerate and Indefinite Hyperbolic Spaces
  • DOI:
    10.1007/s12220-022-01080-1
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaojun Huang;Ming Xiao
  • 通讯作者:
    Xiaojun Huang;Ming Xiao
Holomorphic mappings between hyperquadrics with positive signature
具有正签名的超二次曲面之间的全纯映射
Proper mappings between indefinite hyperbolic spaces and type I classical domains
不定双曲空间与 I 型经典域之间的正确映射
A high-order Hopf lemma for mappings into classical domains and applications
用于映射到经典领域和应用程序的高阶 Hopf 引理
Kähler-Einstein metrics and obstruction flatness of circle bundles
圆束的克勒-爱因斯坦度量和阻碍平坦度
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ming Xiao其他文献

Monitoring AGNs with Hβ Asymmetry. II. Reverberation Mapping of Three Seyfert Galaxies Historically Displaying Hβ Profiles with Changing Asymmetry: Mrk 79, NGC 3227, and Mrk 841
监测 AGN 与 Hβ 不对称性。
  • DOI:
    10.3847/1538-4357/abc2d2
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael S. Brotherton;Pu Du;Ming Xiao;Dong-Wei Bao;Bixuan Zhao;Jacob N. McLane;Kianna A. Olson;Kai Wang;Zheng-Peng Huang;Chen Hu;David H. Kasper;William T. Chick;My L. Nguyen;Jaya Maithil;Derek H;Yan-Rong Li;Luis C. Ho;Jin-Ming Bai;Wei-Hao Bian;Jian-Mi
  • 通讯作者:
    Jian-Mi
Synthesis of ZnS/CdS Composite Nanoparticles by Coprecipitation from Reverse Micelles Using CO2 as Antisolvent
CO2 为反溶剂,反胶束共沉淀法合成 ZnS/CdS 复合纳米粒子
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiangling Zhang;Ming Xiao;Zhimin Liu;Buxing Han;Tao Jiang;Jun He;Guangying Yang
  • 通讯作者:
    Guangying Yang
Comparison of Serum Triiodothyronine with Biomarkers for Alzheimer's Disease Continuum in Euthyroid Subjects.
甲状腺功能正常受试者血清三碘甲状腺原氨酸与阿尔茨海默病连续体生物标志物的比较。
  • DOI:
    10.3233/jad-215092
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Feifei Ge;Lin Dong;Dong;Xing;Jingping Shi;Ming Xiao
  • 通讯作者:
    Ming Xiao
A theorem on Hermitian rank and mapping problems
  • DOI:
    10.4310/mrl.2023.v30.n3.a12
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Ming Xiao
  • 通讯作者:
    Ming Xiao
Global patterns of the beta diversity-energy relationship in terrestrial vertebrates
陆地脊椎动物β多样性-能量关系的全球模式

Ming Xiao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ming Xiao', 18)}}的其他基金

Conference: Convergence Approaches to Arctic Coasts
会议:北极海岸的融合方法
  • 批准号:
    2332253
  • 财政年份:
    2023
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Conference: 2023 STEM Summer Camp for Indigenous Middle School Students in Utqiagvik, Alaska
会议:2023阿拉斯加乌特恰格维克原住民中学生STEM夏令营
  • 批准号:
    2312858
  • 财政年份:
    2023
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
SitS: Collaborative Research: Understand and forecast long-term variations of in-situ geophysical and geomechanical characteristics of degrading permafrost in the Arctic
SitS:合作研究:了解和预测北极退化永久冻土原位地球物理和地质力学特征的长期变化
  • 批准号:
    2034363
  • 财政年份:
    2021
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Collaborative Research: AccelNet: Permafrost Coastal Systems Network (PerCS-Net) -- a circumpolar alliance for arctic coastal community information exchange
合作研究:AccelNet:永久冻土海岸系统网络(PerCS-Net)——北极沿海社区信息交换的环极联盟
  • 批准号:
    1927137
  • 财政年份:
    2019
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
NNA Track 1: Collaborative Research: Resilience and adaptation to the effects of permafrost degradation induced coastal erosion
NNA 轨道 1:合作研究:对永久冻土退化引起的海岸侵蚀影响的恢复和适应
  • 批准号:
    1927718
  • 财政年份:
    2019
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Holomorphic and CR mappings in Several Complex Variables
多个复杂变量中的全纯和 CR 映射
  • 批准号:
    1800549
  • 财政年份:
    2018
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Convergence NNA: Coordinate a Transdisciplinary Research Network to Identify Challenges of and Solutions to Permafrost Coastal Erosion and Its Socioecological Impacts in the Arctic
融合 NNA:协调跨学科研究网络,以确定北极永久冻土海岸侵蚀及其社会生态影响的挑战和解决方案
  • 批准号:
    1745369
  • 财政年份:
    2018
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Mobilization of Sand Particles and Erosion Progression Under Various Permeating Fluids
不同渗透流体下砂粒的流动和侵蚀进展
  • 批准号:
    1346843
  • 财政年份:
    2013
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Mobilization of Sand Particles and Erosion Progression Under Various Permeating Fluids
不同渗透流体下砂粒的流动和侵蚀进展
  • 批准号:
    1200081
  • 财政年份:
    2012
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Energy-Minimal Principles in Geometric Function Theory
几何函数理论中的能量最小原理
  • 批准号:
    2154943
  • 财政年份:
    2022
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Geometric Function Theory and Mathematical Physics
几何函数论与数学物理
  • 批准号:
    RGPIN-2019-04940
  • 财政年份:
    2022
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric Function Theory and Mathematical Physics
几何函数论与数学物理
  • 批准号:
    RGPIN-2019-04940
  • 财政年份:
    2021
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Discovery Grants Program - Individual
Removability in Geometric Function Theory
几何函数理论中的可移性
  • 批准号:
    2050113
  • 财政年份:
    2021
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Geometric Function Theory in Euclidean and Metric Spaces
欧几里得和度量空间中的几何函数理论
  • 批准号:
    2055171
  • 财政年份:
    2021
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Geometric Function Theory and Mathematical Physics
几何函数论与数学物理
  • 批准号:
    RGPIN-2019-04940
  • 财政年份:
    2020
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Elucidating the Influence of Metal Binding on Electronic/Geometric Structure-Function Relationships in Photorespiration
合作研究:阐明金属结合对光呼吸中电子/几何结构-功能关系的影响
  • 批准号:
    1904310
  • 财政年份:
    2019
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Geometric Function Theory and Mathematical Physics
几何函数论与数学物理
  • 批准号:
    RGPIN-2019-04940
  • 财政年份:
    2019
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Elucidating the Influence of Metal Binding on Electronic/Geometric Structure-Function Relationships in Photorespiration
合作研究:阐明金属结合对光呼吸中电子/几何结构-功能关系的影响
  • 批准号:
    1904535
  • 财政年份:
    2019
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Applications of the Geometric Function Theory to Mathematical Physics
几何函数理论在数学物理中的应用
  • 批准号:
    RGPIN-2014-06586
  • 财政年份:
    2018
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了