CAREER:Computational Frameworks for Higher-order Graph and Network Data Analysis
职业:高阶图和网络数据分析的计算框架
基本信息
- 批准号:2045555
- 负责人:
- 金额:$ 41.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Connections in networks are an essential aspect of society, technology, and infrastructure. For example, social connections influence our daily activities, electricity in our homes is delivered by connected power lines, and connections in the brain facilitate our ability to process information. The ability to understand, design, control, and make predictions about these types of connections and networked systems is crucial to improving physical infrastructure, the national defense, and the health of the economy. This project will develop new artificial intelligence capabilities for leveraging big data coming from connections within a wide range of networks. The key novelty in the research is the direct consideration of connections among several entities at once. For example, connections in small group gatherings affect the spread of disease, connections between multiple drugs are key to many medical treatments, and financial transactions often involve several parties. By harnessing these multiway connections, we can make improvements to and make discoveries about mechanisms within networks in many settings. For instance, the research has the potential to improve models that forecast disease spread, propose new types of drug combinations, and enhance our ability to detect adversarial and malicious groups on the Web. This project also involves teaching these ideas in a research-based, interactive summer workshop for college students that is designed to broaden participation in computing-related postgraduate education.Graphs or networks are a fundamental abstraction for complex relational data throughout the sciences. The basic idea of network models is to represent components of the data by a set of nodes, and to model the relationships among these components using edges that connect pairs of nodes. Computations designed to mine and learn from graph data have resulted in diverse applications within biomedicine, economics, transportation, sociology, and other fields. However, the focus on pairwise relationships, as encoded by edges in a graph, inherently limits traditional network models. Much of the structure in complex data involves higher-order relationships that take place among more than two entities at once. For example, people communicate in groups over email or text message, students gather in groups in classrooms, and biological interactions occur between a set of molecules rather than just two. Going beyond graph methods is necessary to fully realize the richness of such higher-order interactions that are pervasive in data. This project ushers in the next generation of network data analysis by directly modeling higher-order interactions in network data and developing data mining and machine learning algorithms for generating meaningful data insights from such models. The research focuses on three models for higher-order network data, hypergraphs, tensors, and simplicial complexes, which are promising for the way in which they make us think about computations associated with the data. For each model, the project will develop data mining and machine learning methods that offer new insights into network data. These methods will be applied to a variety of real-world data to demonstrate applications in social networks, e-commerce, biomedicine, and information management.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
网络中的连接是社会、技术和基础设施的重要方面。例如,社会联系影响我们的日常活动,我们家中的电力是由连接的电线提供的,大脑中的连接促进了我们处理信息的能力。理解、设计、控制和预测这些类型的连接和网络系统的能力对于改善物理基础设施、国防和经济健康至关重要。该项目将开发新的人工智能功能,以利用来自广泛网络内连接的大数据。这项研究的关键新奇在于,它直接考虑了几个实体之间的联系。例如,小团体聚会中的联系会影响疾病的传播,多种药物之间的联系是许多医疗的关键,金融交易通常涉及多方。通过利用这些多路连接,我们可以在许多环境中改进和发现网络中的机制。例如,这项研究有可能改进预测疾病传播的模型,提出新型药物组合,并提高我们在网络上检测敌对和恶意群体的能力。该项目还包括在一个以研究为基础的互动式暑期研讨会上为大学生教授这些想法,旨在扩大与计算相关的研究生教育的参与。图形或网络是整个科学领域复杂关系数据的基本抽象。网络模型的基本思想是通过一组节点来表示数据的组件,并使用连接节点对的边来建模这些组件之间的关系。旨在从图形数据中挖掘和学习的计算已经在生物医学,经济学,交通运输,社会学和其他领域中产生了各种应用。然而,对成对关系的关注,如图中的边所编码的,固有地限制了传统的网络模型。复杂数据中的大部分结构都涉及同时发生在两个以上实体之间的高阶关系。例如,人们通过电子邮件或短信进行分组交流,学生们在教室里聚在一起,生物相互作用发生在一组分子之间,而不仅仅是两个分子。超越图方法是完全实现数据中普遍存在的高阶交互的丰富性所必需的。该项目通过直接对网络数据中的高阶交互进行建模,并开发数据挖掘和机器学习算法来从这些模型中生成有意义的数据见解,从而引入下一代网络数据分析。研究重点是高阶网络数据的三种模型,超图,张量和单纯复形,它们使我们思考与数据相关的计算方式。对于每个模型,该项目将开发数据挖掘和机器学习方法,为网络数据提供新的见解。这些方法将被应用于各种真实世界的数据,以展示在社交网络,电子商务,生物医学和信息管理中的应用。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Approximate Decomposable Submodular Function Minimization for Cardinality-Based Components
基于基数的组件的近似可分解子模函数最小化
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Nate Veldt, Austin R.
- 通讯作者:Nate Veldt, Austin R.
Fauci-Email: A JSON Digest of Anthony Fauci's Released Emails
Fauci-Email:安东尼·福奇已发布电子邮件的 JSON 摘要
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Benson, Austin R.;Veldt, Nate;Gleich, David F.
- 通讯作者:Gleich, David F.
https://doi.org/10.1137/1.9781611977172.17
https://doi.org/10.1137/1.9781611977172.17
- DOI:10.1137/1.9781611977172.17
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Ilya Amburg, Nate Veldt
- 通讯作者:Ilya Amburg, Nate Veldt
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Austin Benson其他文献
Austin Benson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
RUI: Mechanistic Elucidation of the Formation of Metal-organic Frameworks: A Spectroscopic, Synthetic, and Computational Approach
RUI:金属有机框架形成的机理阐明:光谱、合成和计算方法
- 批准号:
2305285 - 财政年份:2023
- 资助金额:
$ 41.79万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Computational Exploration of Electrically Conductive Metal-Organic Frameworks as Cathode Materials in Lithium-Sulfur Batteries
合作研究:CDS
- 批准号:
2302618 - 财政年份:2023
- 资助金额:
$ 41.79万 - 项目类别:
Standard Grant
Epigenomic and transcriptomic plasticity Investigations of solid tumour Cancers; computational frameworks for mapping temporal, intratumor phenotypes
实体瘤癌症的表观基因组和转录组可塑性研究;
- 批准号:
2890201 - 财政年份:2023
- 资助金额:
$ 41.79万 - 项目类别:
Studentship
Collaborative Research: Frameworks: A multi-fidelity computational framework for vascular mechanobiology in SimVascular
合作研究:框架:SimVasulous 中血管力学生物学的多保真度计算框架
- 批准号:
2310910 - 财政年份:2023
- 资助金额:
$ 41.79万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Computational Exploration of Electrically Conductive Metal-Organic Frameworks as Cathode Materials in Lithium-Sulfur Batteries
合作研究:CDS
- 批准号:
2302617 - 财政年份:2023
- 资助金额:
$ 41.79万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: A multi-fidelity computational framework for vascular mechanobiology in SimVascular
合作研究:框架:SimVasulous 中血管力学生物学的多保真度计算框架
- 批准号:
2310909 - 财政年份:2023
- 资助金额:
$ 41.79万 - 项目类别:
Standard Grant
Multiscale computational frameworks for integrating large-scale cortical dynamics, connectivity, and behavior
用于集成大规模皮层动力学、连接性和行为的多尺度计算框架
- 批准号:
10840682 - 财政年份:2023
- 资助金额:
$ 41.79万 - 项目类别:
CAREER: Future phylogenies: novel computational frameworks for biomolecular sequence analysis involving complex evolutionary origins
职业:未来的系统发育:涉及复杂进化起源的生物分子序列分析的新型计算框架
- 批准号:
2144121 - 财政年份:2022
- 资助金额:
$ 41.79万 - 项目类别:
Continuing Grant
PIPP Phase I: Develop and Evaluate Computational Frameworks to Predict and Prevent Future Coronavirus Pandemics
PIPP 第一阶段:开发和评估计算框架以预测和预防未来的冠状病毒大流行
- 批准号:
2200138 - 财政年份:2022
- 资助金额:
$ 41.79万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: Seismic COmputational Platform for Empowering Discovery (SCOPED)
合作研究:框架:增强发现能力的地震计算平台(SCOPED)
- 批准号:
2104052 - 财政年份:2021
- 资助金额:
$ 41.79万 - 项目类别:
Standard Grant