CAREER: A Robust and Data-driven Design for Carbon-intelligent Distributed Systems

职业生涯:碳智能分布式系统的稳健且数据驱动的设计

基本信息

项目摘要

The internet is a 24/7 service, it could be 24/7 carbon-free too. This is an ambitious goal that has been recently advocated by internet pioneer industries as a response of the computing domain to climate change. Achieving this goal requires the decarbonization of operations of geographically distributed digital infrastructure, e.g., data centers, providing services such as video streaming, or hosting compute-intensive applications. Despite a decade of effort on the sustainability of digital infrastructure, the current design is still inadequate to achieve the 24/7 carbon-free goal. The current design focuses to minimize the energy cost and/or consumption or maximize renewable participation. The latter is the closest effort towards the decarbonization goal; however, when the wind is not blowing or the sun is not shining, this design has no carbon intelligence, i.e., it obliviously draws energy from the grid without taking into account that the carbon intensity of grid changes over time due to existence of other carbon-free sources such as hydropower. This proposal explicitly considers carbon intelligence as a first-class design principle of digital infrastructure. It will develop and evaluate novel carbon-intelligent methodologies that are robust against uncertainty and provide a design space for data-driven adaptation for improved practical performance. The proposed theories will create a foundation for designing robust and data-driven systems and will be applicable more broadly to the computer and network systems. The carbon-intelligence approaches open new research directions for advancing the research at the intersection of computer science and sustainability. More broadly, this proposal is a response of the computing domain to climate change, one of the largest problems’ society has ever faced. Last, it creates opportunities for educational, sociotechnical, and outreach activities. The planned sociotechnical activities broaden the research outcome of this proposal for measuring and improving the inequity of the energy system.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
互联网是一个24/7的服务,它也可以是24/7无碳的。这是一个雄心勃勃的目标,最近被互联网先驱行业倡导为计算领域对气候变化的响应。实现这一目标需要对地理分布的数字基础设施的运营进行脱碳,例如,数据中心,提供视频流等服务,或托管计算密集型应用程序。尽管在数字基础设施的可持续性方面进行了十年的努力,但目前的设计仍然不足以实现24/7无碳目标。目前的设计重点是最大限度地减少能源成本和/或消耗或最大限度地提高可再生能源的参与。后者是最接近脱碳目标的努力;然而,当风不吹或太阳不照耀时,这种设计没有碳智能,即,它不经意地从电网中汲取能量,而不考虑电网的碳强度由于存在其他无碳源(例如水电)而随时间变化。该提案明确将碳智能视为数字基础设施的一流设计原则。它将开发和评估新的碳智能方法,这些方法对不确定性具有鲁棒性,并为数据驱动的适应提供设计空间,以提高实际性能。所提出的理论将为设计健壮的数据驱动系统奠定基础,并将更广泛地适用于计算机和网络系统。碳智能方法为推进计算机科学和可持续发展交叉领域的研究开辟了新的研究方向。更广泛地说,这一提议是计算领域对气候变化的回应,气候变化是人类社会面临的最大问题之一。最后,它为教育、社会技术和外联活动创造了机会。计划中的社会技术活动扩大了该提案的研究成果,以衡量和改善能源系统的不平等。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The War of the Efficiencies: Understanding the Tension between Carbon and Energy Optimization
效率之战:了解碳与能源优化之间的紧张关系
Achieving Near-Optimal Individual Regret & Low Communications in Multi-Agent Bandits
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xuchuang Wang;L. Yang;Y. Chen;Xutong Liu;M. Hajiesmaili;D. Towsley;John C.S. Lui
  • 通讯作者:
    Xuchuang Wang;L. Yang;Y. Chen;Xutong Liu;M. Hajiesmaili;D. Towsley;John C.S. Lui
Distributed Bandits with Heterogeneous Agents
Online Peak-Aware Energy Scheduling with Untrusted Advice
On-Demand Communication for Asynchronous Multi-Agent Bandits
  • DOI:
    10.48550/arxiv.2302.07446
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Chen;L. Yang;Xuchuang Wang;Xutong Liu;M. Hajiesmaili;John C.S. Lui;D. Towsley
  • 通讯作者:
    Y. Chen;L. Yang;Xuchuang Wang;Xutong Liu;M. Hajiesmaili;John C.S. Lui;D. Towsley
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mohammadhassan Hajiesmaili其他文献

Mohammadhassan Hajiesmaili的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mohammadhassan Hajiesmaili', 18)}}的其他基金

Collaborative Research: CPS Medium: Enabling DER Integration via Redesign of Information Flows
合作研究:CPS 媒介:通过重新设计信息流实现 DER 集成
  • 批准号:
    2136199
  • 财政年份:
    2021
  • 资助金额:
    $ 54.12万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Dynamic Pricing and Procurement for Distributed Networked Platforms
合作研究:CNS 核心:小型:分布式网络平台的动态定价和采购
  • 批准号:
    2102963
  • 财政年份:
    2021
  • 资助金额:
    $ 54.12万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Dynamic Data-driven Systems - Theory and Applications
合作研究:CNS 核心:媒介:动态数据驱动系统 - 理论与应用
  • 批准号:
    2106299
  • 财政年份:
    2021
  • 资助金额:
    $ 54.12万
  • 项目类别:
    Standard Grant
CNS: Core: Small: Energy and Load Management in Data Centers: Online Optimization and Learning
CNS:核心:小型:数据中心的能源和负载管理:在线优化和学习
  • 批准号:
    1908298
  • 财政年份:
    2019
  • 资助金额:
    $ 54.12万
  • 项目类别:
    Standard Grant

相似国自然基金

供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
  • 批准号:
    70601028
  • 批准年份:
    2006
  • 资助金额:
    7.0 万元
  • 项目类别:
    青年科学基金项目
心理紧张和应力影响下Robust语音识别方法研究
  • 批准号:
    60085001
  • 批准年份:
    2000
  • 资助金额:
    14.0 万元
  • 项目类别:
    专项基金项目
ROBUST语音识别方法的研究
  • 批准号:
    69075008
  • 批准年份:
    1990
  • 资助金额:
    3.5 万元
  • 项目类别:
    面上项目
改进型ROBUST序贯检测技术
  • 批准号:
    68671030
  • 批准年份:
    1986
  • 资助金额:
    2.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: New data integration approaches for efficient and robust meta-estimation, model fusion and transfer learning
职业:新的数据集成方法,用于高效、稳健的元估计、模型融合和迁移学习
  • 批准号:
    2337943
  • 财政年份:
    2024
  • 资助金额:
    $ 54.12万
  • 项目类别:
    Continuing Grant
CAREER: Robust Data Based Control and Estimation for Resilient DC Microgrids
职业:基于稳健数据的弹性直流微电网控制和估计
  • 批准号:
    2339434
  • 财政年份:
    2024
  • 资助金额:
    $ 54.12万
  • 项目类别:
    Continuing Grant
CAREER: Robust Algorithms for Corrupted Data
职业:针对损坏数据的稳健算法
  • 批准号:
    2238821
  • 财政年份:
    2023
  • 资助金额:
    $ 54.12万
  • 项目类别:
    Continuing Grant
CAREER: Robust LSM-Based Data Stores
职业:基于 LSM 的强大数据存储
  • 批准号:
    2144547
  • 财政年份:
    2022
  • 资助金额:
    $ 54.12万
  • 项目类别:
    Continuing Grant
CAREER: Advancing Fair Data Mining via New Robust and Explainable Algorithms and Human-Centered Approaches
职业:通过新的稳健且可解释的算法和以人为本的方法推进公平数据挖掘
  • 批准号:
    2146091
  • 财政年份:
    2022
  • 资助金额:
    $ 54.12万
  • 项目类别:
    Standard Grant
CAREER: Algorithms and Data Structures for Robust 3D Geometry Processing via Intrinsic Triangulations
职业:通过内在三角测量进行鲁棒 3D 几何处理的算法和数据结构
  • 批准号:
    1943123
  • 财政年份:
    2020
  • 资助金额:
    $ 54.12万
  • 项目类别:
    Continuing Grant
CAREER: Robust Policy Learning for Safe and Reliable Algorithmic Decision Making from Observational Data in Sensitive Applications
职业:通过敏感应用中的观测数据进行稳健的策略学习,以实现安全可靠的算法决策
  • 批准号:
    1846210
  • 财政年份:
    2019
  • 资助金额:
    $ 54.12万
  • 项目类别:
    Continuing Grant
CAREER: Robust Brain Imaging Genomics Data Mining Framework for Improved Cognitive Health
职业:用于改善认知健康的强大脑成像基因组数据挖掘框架
  • 批准号:
    1652943
  • 财政年份:
    2017
  • 资助金额:
    $ 54.12万
  • 项目类别:
    Continuing Grant
CAREER: Optimization Based Methods for Robust Pattern Recognition in Time-Series Data
职业:基于优化的时间序列数据中鲁棒模式识别方法
  • 批准号:
    1454218
  • 财政年份:
    2015
  • 资助金额:
    $ 54.12万
  • 项目类别:
    Standard Grant
CAREER: A Data-driven Robust Approach for Large Scale Dynamic Optimization
职业:用于大规模动态优化的数据驱动的鲁棒方法
  • 批准号:
    1351838
  • 财政年份:
    2014
  • 资助金额:
    $ 54.12万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了