CAREER: Continuous-wave Terahertz laser employing HTS Josephson junctions

职业:采用 HTS 约瑟夫森结的连续波太赫兹激光器

基本信息

  • 批准号:
    2045957
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-03-01 至 2026-02-28
  • 项目状态:
    未结题

项目摘要

Proposal Number: 2045957Principal Investigator: Timothy M BensemanTitle: CAREER: Continuous-wave Terahertz laser employing HTS Josephson junctionsInstitution: CUNY Queens CollegeNontechnical AbstractPowerful and lightweight lasers that operate at frequencies between 0.3 trillion Hertz and 1.5 trillion Hertz will offer a leap forward for numerous applications, such as secure and ultrafast wireless data networking, detection of concealed drugs and explosives, and early-warning identification of tooth decay and skin cancer. They will far surpass the capabilities of lasers and laser-like electromagnetic radiation sources currently available in this frequency range, which either have low power output, or are too large, heavy, and power-consuming to be used in field-portable applications. This project establishes a new type of laser technology uniquely based on high-temperature superconductors that will be ideal for the above applications in this ‘terahertz gap’ frequency range. To date, milliwatt-level power from this type of laser has only been theoretically predicted, at the level of fundamental physics. This project tests the ideas empirically and engineers the technology to make it available for deployment. The cryocooling requirements of this technology take advantage of micro-cryocoolers that are already used for infrared cameras and night vision goggles. To complement the superconductivity research project, a program of scientific outreach activities is performed. These are based on superconductive levitation experiments to inspire high schoolers and community college students, particularly from underrepresented demographics, into STEM fields. A graduate-level course module focuses on lithographic fabrication techniques for microelectronics and prepares students for careers in device microfabrication research.Technical AbstractAt present, the sources of coherent radiation available between approximately 0.3 trillion Hertz and 1.5 trillion Hertz all have serious engineering drawbacks that limit their usefulness. Existing technologies that work at these frequencies either generate very low levels of output power, or are very heavy, bulky, and power-consuming. User-friendly lasers operating in this ‘terahertz gap’ range would revolutionize a number of fields, including high-bandwidth data transmission, scientific and medical imaging, and security and defense technologies. Stacked ‘intrinsic’ superconductor-insulator-superconductor (Josephson) junctions in the extremely anisotropic high-temperature superconducting compound Bi2Sr2CaCu2O8 are one of the most promising candidates for filling the ‘terahertz gap’. These intrinsic Josephson junctions can be used to engineer the only compact terahertz laser source that currently offers tunability, high power, and continuous-wave operation. This project engineers terahertz laser sources based on Bi2Sr2CaCu2O8 Josephson junctions to achieve at least an order-of-magnitude enhancement in the terahertz power output of these devices to 1 milliwatt or more, while also at least doubling their operating frequency range to at least 1.0 terahertz. These enhancements in terahertz power and emission frequency are targeted even at operation temperatures of 77 Kelvin or more, in order to minimize cryocooling requirements. Terahertz sources are microfabricated by patterning stacks on Bi2Sr2CaCu2O8 crystals using optical lithography and argon-ion milling. The feasibility of doing this at volume for commercial-scale terahertz laser applications will be tested. Finally, a further research aim of this project is to measure the behavior of a novel type of Josephson plasmon in Bi2Sr2CaCu2O8. Experimentally understanding this plasmon would make it possible to engineer an entire new class of highly efficient electronic devices for terahertz signal detection and mixing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
项目编号:2045957首席研究员:Timothy M bensem标题:职业:采用高温高温约瑟夫森结的连续波太赫兹激光器功率强大且重量轻的激光器工作频率在0.3万亿赫兹到1.5万亿赫兹之间,将为许多应用提供飞跃式的发展,如安全和超快的无线数据网络,隐藏毒品和爆炸物的检测,以及蛀牙和皮肤癌的早期预警识别。它们将远远超过目前在该频率范围内可用的激光和类似激光的电磁辐射源的能力,这些电磁辐射源要么功率输出低,要么太大、太重、太耗电,无法用于现场便携式应用。该项目建立了一种基于高温超导体的新型激光技术,这将是在“太赫兹间隙”频率范围内上述应用的理想选择。到目前为止,这种类型的激光的毫瓦级功率只是在基础物理学的水平上进行了理论上的预测。该项目对这些想法进行了经验测试,并设计了技术,使其可用于部署。这项技术的低温冷却要求利用了已经用于红外摄像机和夜视镜的微型低温冷却器。为了补充超导研究项目,执行了一项科学推广活动计划。这些都是基于超导悬浮实验,以激励高中生和社区大学生,特别是来自代表性不足的人口,进入STEM领域。研究生水平的课程模块侧重于微电子的光刻制造技术,并为学生在器件微制造研究方面的职业做好准备。目前,在0.3万亿赫兹到1.5万亿赫兹之间可用的相干辐射源都存在严重的工程缺陷,限制了它们的使用。在这些频率下工作的现有技术要么产生非常低的输出功率,要么非常笨重、笨重、耗电。在这个“太赫兹间隙”范围内工作的用户友好型激光器将彻底改变许多领域,包括高带宽数据传输、科学和医学成像以及安全和国防技术。在极各向异性高温超导化合物Bi2Sr2CaCu2O8中堆叠的“本征”超导体-绝缘体-超导体(Josephson)结是填补“太赫兹间隙”最有希望的候选者之一。这些固有的约瑟夫森结可用于设计目前提供可调谐,高功率和连续波操作的唯一紧凑太赫兹激光源。该项目设计了基于Bi2Sr2CaCu2O8 Josephson结的太赫兹激光源,使这些设备的太赫兹功率输出至少提高了一个数量级,达到1毫瓦或更高,同时将其工作频率范围至少提高了一倍,达到至少1.0太赫兹。即使在77开尔文或更高的工作温度下,这些太赫兹功率和发射频率的增强也是为了最大限度地减少冷冻冷却要求。利用光学光刻和氩离子铣削技术,在Bi2Sr2CaCu2O8晶体上形成图案化堆叠,实现了太赫兹源的微加工。在商业规模的太赫兹激光应用中大量使用这种方法的可行性将被测试。最后,本项目的进一步研究目标是测量Bi2Sr2CaCu2O8中新型约瑟夫森等离子体的行为。通过实验了解这种等离子体将使设计一种全新的用于太赫兹信号检测和混合的高效电子设备成为可能。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Timothy Benseman其他文献

Self-Heating Phase Coherence and Sidewall angle in Stacked Intrinsic Josephson Junction Bi2Sr2CaCu2O8 Terahertz Sources
堆叠本征约瑟夫森结 Bi2Sr2CaCu2O8 太赫兹源中的自热相位相干性和侧壁角
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Karen Kihlstrom;Timothy Benseman;Alexei E. Koshelev;Ulrich Welp;Wa0-Kwong Kwok;and Kazuo Kadowaki
  • 通讯作者:
    and Kazuo Kadowaki
The Cavity Resonance Mode of Bi2Sr2CaCu2O8 Mesa Terahertz Sources as Probed by Scanning Laser Thermal Microscopy
扫描激光热显微镜探测 Bi2Sr2CaCu2O8 台面太赫兹源的空腔谐振模式
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Timothy Benseman;Alexei Koshelev;Vitalii Vlasko-Vlasov;Ulrich Welp;Wai-Kwong Kwok;Yang Hao;Boris Gross;Matthias Lange;Dieter Loelle;Reinhold Kleiner;Kazuo Kadowaki
  • 通讯作者:
    Kazuo Kadowaki
The Hidden order in URu2Si2 unveiled?
URu2Si2中的隐藏秩序揭晓?
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Timothy Benseman;Alexei Koshelev;Vitalii Vlasko-Vlasov;Ulrich Welp;Wai-Kwong Kwok;Yang Hao;Boris Gross;Matthias Lange;Dieter Loelle;Reinhold Kleiner;Kazuo Kadowaki;楠見 孝;H. Ikeda
  • 通讯作者:
    H. Ikeda

Timothy Benseman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Improving power grid frequency monitoring through high-fidelity continuous-point-on-wave (CPOW) data
通过高保真连续波点 (CPOW) 数据改善电网频率监测
  • 批准号:
    10074122
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Collaborative R&D
Continuous monitoring of venous flow and detection of abnormalities by overlay of skin resistance/reactance and photoelectric volumetric pulse wave
通过叠加皮肤电阻/电抗和光电容积脉搏波,连续监测静脉流量并检测异常情况
  • 批准号:
    23H03783
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Room Temperature Continuous-Wave Inorganic Maser
室温连续波无机微波激射器
  • 批准号:
    EP/S000798/2
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
MRI: Acquisition of a Continuous-wave Electron-paramagnetic Resonance Spectrometer for Research and Education
MRI:购买连续波电子顺磁共振波谱仪用于研究和教育
  • 批准号:
    2117480
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Investigation of quantum dynamics of wave packets with a continuous-variable optical quantum simulator
用连续变量光量子模拟器研究波包的量子动力学
  • 批准号:
    21K18593
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Continuous-wave laser system for precision experiments with single molecular ions
用于单分子离子精密实验的连续波激光系统
  • 批准号:
    460457764
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Major Research Instrumentation
MRI: Acquisition of an X-band Continuous-wave Electron Paramagnetic Resonance (EPR) Spectrometer
MRI:采集 X 波段连续波电子顺磁共振 (EPR) 能谱仪
  • 批准号:
    2019066
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Continuous monitoring of vascular age by pulse wave velocity using wearable ECG and PPG sensors
使用可穿戴 ECG 和 PPG 传感器通过脉搏波速度连续监测血管年龄
  • 批准号:
    ES/V00980X/1
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
First detection of the continuous gravitational wave from low mass X-ray binaries
首次从低质量 X 射线双星中探测到连续引力波
  • 批准号:
    20J20809
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Continuous-Wave Laser Thomson Scattering Diagnostic for Low Temperature Plasmas
低温等离子体的连续波激光汤姆逊散射诊断
  • 批准号:
    2010466
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了