CAREER: Enabling Trustworthy Speech Technologies for Mental Health Care: From Speech Anonymization to Fair Human-centered Machine Intelligence
职业:为心理健康护理提供值得信赖的语音技术:从语音匿名化到公平的以人为本的机器智能
基本信息
- 批准号:2046118
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Speech-based technologies have been heralded as promising solutions to overcome the limitations of existing clinical modalities related to limited healthcare access, non-naturalistic in-clinic interactions, and social stigma. Speech measures combined with artificial intelligence can serve as valuable biomarkers for mental health conditions, such as depression and post-traumatic stress disorder. Yet, in order for artificial intelligence to truly succeed in a future-of-work landscape in which clinicians will be expected to work side-by-side with artificial intelligence systems, both clinicians and patients need to calibrate their trust in the algorithms that power this decision-making process. The goal of this project is to design reliable machine learning, notably for speech-based diagnosis and monitoring of mental health, for addressing three pillars of trustworthiness: explainability, privacy preservation, and fair decision making. Trustworthiness is critical for both patients and clinicians: patients must be treated fairly and without the risk of reidentification, while clinical decision-making needs to rely on explainable and unbiased machine learning. This research program further provides a fertile ground for training high school and college students providing them with the knowledge about (and inclination toward) ethically applying computing research in sensitive populations. The tangible applications developed as part of this research serve as a vehicle to encourage students to pursue careers in Science, Technology, Engineering, and Mathematics, and prepare them to work in transdisciplinary settings for solving real-world problems.This project seeks to design explainable, anonymized, and fair speech biomarkers for mental health, integrating aspects of speech acquisition, transparent modeling, and unbiased decision making. The work is divided into three technical objectives. The first objective designs novel speaker anonymization algorithms that retain mental health information and suppress information related to the identity of the speaker. The anonymization algorithms learn a mapping between the original speech and a latent space, which embeds information about speaker identity, mental health, and phonological sequence through deterministic and probabilistic operations. The second objective improves explainability of speech-based models for tracking mental health through novel convolutional architectures that learn explainable spectrotemporal transformations relevant to speech production fundamentals. The third objective examines how bias in data and model design may perpetuate social disparities in mental health, and designs new machine learning to mitigate unwanted bias in speech-based mental health diagnosis. Through a series of experiments this work further contributes to understanding ways in which human-machine partnerships are formed in mental healthcare settings along dimensions of trust formation, maintenance, and repair.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
基于语音的技术已被誉为有希望的解决方案,以克服现有临床模式的局限性,这些限制与有限的医疗保健机会、非自然主义的临床互动和社会耻辱有关。语音测量与人工智能相结合,可以作为精神健康状况的有价值的生物标记物,如抑郁症和创伤后应激障碍。然而,为了让人工智能在未来的工作环境中真正取得成功,临床医生将被期望与人工智能系统并肩工作,临床医生和患者都需要调整他们对推动这一决策过程的算法的信任。该项目的目标是设计可靠的机器学习,特别是基于语音的诊断和心理健康监测,以解决可信度的三大支柱:可解释性、隐私保护和公平决策。可信度对患者和临床医生都至关重要:患者必须得到公平对待,没有重新识别的风险,而临床决策需要依赖于可解释和不偏不倚的机器学习。这项研究计划还为培训高中生和大学生提供了肥沃的土壤,为他们提供了在敏感人群中应用计算研究的伦理知识(和倾向)。作为这项研究的一部分,开发的有形应用程序作为一种工具,鼓励学生在科学、技术、工程和数学领域追求职业生涯,并为他们在跨学科环境中解决现实世界的问题做好准备。该项目旨在设计可解释的、匿名的、公平的心理健康语音生物标记物,整合语音获取、透明建模和公正决策的各个方面。这项工作分为三个技术目标。第一个目标是设计新颖的说话人匿名算法,该算法保留了说话人的心理健康信息,并抑制了与说话人身份相关的信息。匿名化算法学习原始语音和潜在空间之间的映射,潜在空间通过确定性和概率操作嵌入关于说话人身份、心理健康和语音序列的信息。第二个目标是通过学习与语音产生基础相关的可解释的谱时间变换的新颖卷积结构来提高基于语音的跟踪心理健康的模型的可解释性。第三个目标是研究数据和模型设计中的偏差如何延续心理健康方面的社会差异,并设计新的机器学习来减轻基于语音的心理健康诊断中不必要的偏差。通过一系列实验,这项工作进一步有助于了解在精神卫生保健环境中,如何沿着信任形成、维护和修复的维度形成人机合作伙伴关系。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Knowledge-Driven Vowel-Based Approach of Depression Classification from Speech Using Data Augmentation
使用数据增强从语音进行抑郁症分类的知识驱动的基于元音的方法
- DOI:10.1109/icassp49357.2023.10096105
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Feng, Kexin;Chaspari, Theodora
- 通讯作者:Chaspari, Theodora
Preserving Mental Health Information in Speech Anonymization
在语音匿名化中保留心理健康信息
- DOI:10.1109/aciiw57231.2022.10086012
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Ravuri, Vinesh;Gutierrez-Osuna, Ricardo;Chaspari, Theodora
- 通讯作者:Chaspari, Theodora
Investigating Trust in Human-Machine Learning Collaboration: A Pilot Study on Estimating Public Anxiety from Speech
调查人机学习协作中的信任:从语音估计公众焦虑的试点研究
- DOI:10.1145/3462244.3479926
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Tutul, Abdullah Aman;Nirjhar, Ehsanul Haque;Chaspari, Theodora
- 通讯作者:Chaspari, Theodora
Toward Knowledge-Driven Speech-Based Models of Depression: Leveraging Spectrotemporal Variations in Speech Vowels
- DOI:10.1109/bhi56158.2022.9926939
- 发表时间:2022-09
- 期刊:
- 影响因子:0
- 作者:Kexin Feng;Theodora Chaspari
- 通讯作者:Kexin Feng;Theodora Chaspari
An Engineering View on Emotions and Speech: From Analysis and Predictive Models to Responsible Human-Centered Applications
- DOI:10.1109/jproc.2023.3276209
- 发表时间:2023-10
- 期刊:
- 影响因子:20.6
- 作者:Shrikanth S. Narayanan
- 通讯作者:Shrikanth S. Narayanan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Theodora Chaspari其他文献
Dynamical systems modeling of day-to-day signal-based patterns of emotional self-regulation and stress spillover in highly-demanding health professions
高要求健康职业中基于信号的日常情绪自我调节和压力溢出模式的动态系统建模
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
George Hadjiantonis;Projna Paromita;Karel Mundnich;Amrutha Nadarajan;Brandon M. Booth;Shrikanth S. Narayanan;Theodora Chaspari - 通讯作者:
Theodora Chaspari
Capturing Regularity of ADL Routines Using Hierarchical Clustering Models
使用层次聚类模型捕获 ADL 例程的规律性
- DOI:
10.1145/3360322.3361007 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
P. Mohan;Bogyeong Lee;Theodora Chaspari;C. Ahn - 通讯作者:
C. Ahn
Exploring Transfer Learning between Scripted and Spontaneous Speech for Emotion Recognition
探索脚本语音和自发语音之间的迁移学习以进行情感识别
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Qingqing Li;Theodora Chaspari - 通讯作者:
Theodora Chaspari
Psychosocial factors and environmental design: Technology and interventions Assessment of emergingmobile connected technologies to promote outdoormobility and transit in older adults and in thosewith Alzheimer’s disease and related dementias: Usability, stressors, barriers, and implications for poli
心理社会因素和环境设计:技术和干预措施评估新兴移动互联技术,以促进老年人和阿尔茨海默病及相关痴呆症患者的户外活动和交通:可用性、压力源、障碍和对政策的影响
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Chanam Lee;Youngjib Ham;Theodora Chaspari;Jinwoo Kim;Shuman Tan;M. Manser;Changbum R. Ahn - 通讯作者:
Changbum R. Ahn
Analysis and modeling of the role of laughter in motivational interviewing based psychotherapy conversations
笑声在基于动机访谈的心理治疗对话中的作用的分析和建模
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Rahul Gupta;Theodora Chaspari;P. Georgiou;David C. Atkins;Shrikanth S. Narayanan - 通讯作者:
Shrikanth S. Narayanan
Theodora Chaspari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Theodora Chaspari', 18)}}的其他基金
Doctoral Consortium at the 2019 International Conference on Affective Computing and Intelligent Interaction
博士联盟出席2019情感计算与智能交互国际会议
- 批准号:
1932823 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
青少年网络欺凌受害经历对危险物质使
用的影响机制研究-基于理性成瘾理论
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
沙利度胺靶向CRBN抑制KPTN泛素化降解和mTORC1信号使胶质母细胞瘤放疗增敏的作用和机制研究
- 批准号:2025JJ60741
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
胰岛素通过MEF2C-TLR4通路使脓毒血症时巨噬细胞过度激活致心肌损伤的机制研究
- 批准号:JCZRYB202500363
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于“相使”理论探究淫羊藿-莪术与工程化外泌体结合介导肿瘤代谢重编程抑制前列腺癌进展的作用及机制研究
- 批准号:2025JJ70415
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
放疗促进肝癌细胞内质网应激使RER1通过TMED10途径进入外泌体诱导巨噬细胞极化从而增强肝癌干细胞干性的研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI大模型嵌入数字企业的“赋能-使能”机制及数智创新模式研究
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:面上项目
无人机使能空中计算多维资源协同分配与优化
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
LSD1通过使组蛋白H3K4位点去甲基化促进自噬参与肾小管上皮细胞凋亡和肾脏纤维化的机制研究
- 批准号:82300769
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RVM区A1型星形胶质细胞通过下调GLT-1使GPER1阳性神经元异常激活易化术后慢性疼痛的机制研究
- 批准号:82301393
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
绣球HmABCI17调控萼片Al3+转运使花色变蓝的分子机制
- 批准号:32371956
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
相似海外基金
CAREER: Enabling Trustworthy Upgrades of Machine-Learning Intensive Cyber-Physical Systems
职业:实现机器学习密集型网络物理系统的可信升级
- 批准号:
2143351 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Collaborative Proposal: SaTC: Frontiers: Enabling a Secure and Trustworthy Software Supply Chain
协作提案:SaTC:前沿:实现安全可信的软件供应链
- 批准号:
2206921 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Collaborative Proposal: SaTC: Frontiers: Enabling a Secure and Trustworthy Software Supply Chain
协作提案:SaTC:前沿:实现安全可信的软件供应链
- 批准号:
2207008 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Collaborative Proposal: SaTC: Frontiers: Enabling a Secure and Trustworthy Software Supply Chain
协作提案:SaTC:前沿:实现安全可信的软件供应链
- 批准号:
2206859 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Collaborative Proposal: SaTC: Frontiers: Enabling a Secure and Trustworthy Software Supply Chain
协作提案:SaTC:前沿:实现安全可信的软件供应链
- 批准号:
2206865 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
TWC: Small: STRUCT: Enabling Secure and Trustworthy Compartments in Mobile Applications
TWC:小:STRUCT:在移动应用程序中启用安全且值得信赖的部分
- 批准号:
1800665 - 财政年份:2017
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
TWC: Small: STRUCT: Enabling Secure and Trustworthy Compartments in Mobile Applications
TWC:小:STRUCT:在移动应用程序中启用安全且值得信赖的部分
- 批准号:
1421824 - 财政年份:2014
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
TWC: Frontier: Collaborative: Enabling Trustworthy Cybersystems for Health and Wellness
TWC:前沿:协作:为健康和保健启用值得信赖的网络系统
- 批准号:
1330142 - 财政年份:2013
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
TWC: Frontier: Collaborative: Enabling Trustworthy Cybersystems for Health and Wellness
TWC:前沿:协作:为健康和保健启用值得信赖的网络系统
- 批准号:
1329686 - 财政年份:2013
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
TWC: Frontier: Collaborative: Enabling Trustworthy Cybersystems for Health and Wellness
TWC:前沿:协作:为健康和保健启用值得信赖的网络系统
- 批准号:
1329737 - 财政年份:2013
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant