CAREER: Leveraging Signal Structure for Cost-Sensitive Adaptive Sampling

职业:利用信号结构进行成本敏感的自适应采样

基本信息

  • 批准号:
    2046175
  • 负责人:
  • 金额:
    $ 55.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-15 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

A persistent challenge to scientists and engineers is the ability to rapidly sense the environment. Whether monitoring for harmful air pollutants, wildfires, or low oxygen levels in lakes, an essential task is to determine all locations where a factor of interest reaches a critical level. To solve this problem, practitioners are increasingly utilizing mobile sensors such as those deployed on unmanned vehicles. While these provide a safe means of exploring large spatial regions and hazardous environments, they also require extensive planning to ensure the most relevant measurements are collected and to manage battery life. This project will overcome these issues through the design of adaptive sampling algorithms, which automatically guide sampling vehicles to the most important regions while accounting for the realistic costs associated with the measurement process. The resulting approaches will provide general-purpose solutions to environmental sampling that can be easily utilized by practitioners while also accounting for the realistic challenges that typically prevent adaptive methods from translating into practice. Furthermore, this research will support education and diversity through the development of curriculum for a high school course on unmanned aerial vehicles as well as a citizen science campaign that leverages adaptive sampling to benefit one of the nation's largest urban parks.The objective of this project is to design and analyze cost-sensitive adaptive sampling algorithms for the problem of level set estimation. Novel adaptive sampling techniques will be developed under three forms of level set structure: (1) boundary smoothness, where no domain or side knowledge is available, (2) known similarity structure that indicates which locations should have similar measurement values, and (3) unknown cluster structure, where the signal of interest is constant within each cluster of locations, and the goal is to simultaneously learn the cluster structure and measurement values. For each case, principled algorithms will be derived based on recent developments from the fields of active learning, multi-armed bandits, and reinforcement learning, with the goal of providing improved empirical performance, rigorous theoretical characterization, and incorporating realistic costs such as the distance traveled while sensing. Algorithms will be evaluated on real-world datasets including those measuring air quality and geothermal energy prospects.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
科学家和工程师面临的一个持续挑战是快速感知环境的能力。无论是监测有害的空气污染物、野火还是湖泊中的低氧水平,一项重要的任务是确定感兴趣的因素达到临界水平的所有位置。为了解决这个问题,从业者越来越多地利用移动的传感器,例如部署在无人驾驶车辆上的传感器。虽然这些提供了探索大空间区域和危险环境的安全手段,但它们也需要广泛的规划,以确保收集最相关的测量数据并管理电池寿命。该项目将通过设计自适应采样算法来克服这些问题,这些算法将自动引导采样车辆前往最重要的区域,同时考虑到与测量过程相关的实际成本。由此产生的方法将为环境采样提供通用的解决方案,从业人员可以很容易地使用,同时也考虑到现实的挑战,通常阻止适应性方法转化为实践。此外,这项研究将支持教育和多样性,通过开发课程的高中课程无人驾驶飞行器以及公民科学运动,利用自适应采样,以造福全国最大的城市park.The项目的目标是设计和分析成本敏感的自适应采样算法的水平集估计的问题。新的自适应采样技术将在三种形式的水平集结构下开发:(1)边界平滑,其中没有域或辅助知识可用,(2)指示哪些位置应该具有相似测量值的已知相似性结构,以及(3)未知聚类结构,其中感兴趣信号在每个位置聚类内是恒定的,并且目标是同时学习集群结构和测量值。对于每一种情况,原则性算法将基于主动学习、多臂强盗和强化学习领域的最新发展来推导,目标是提供改进的经验性能、严格的理论表征,并结合实际成本,如感知时的行驶距离。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
When less is more: How increasing the complexity of machine learning strategies for geothermal energy assessments may not lead toward better estimates
当少即是多时:增加地热能评估机器学习策略的复杂性可能不会带来更好的估计
  • DOI:
    10.1016/j.geothermics.2023.102662
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Mordensky, Stanley P.;Lipor, John J.;DeAngelo, Jacob;Burns, Erick R.;Lindsey, Cary R.
  • 通讯作者:
    Lindsey, Cary R.
What did they just say? Building a Rosetta stone for geoscience and machine learning
他们刚刚说什么?
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mordensky, S.P.;Lipor, J.;Burns, E;Lindsey, C.R.
  • 通讯作者:
    Lindsey, C.R.
A Graph-Based Approach to Boundary Estimation With Mobile Sensors
基于图形的移动传感器边界估计方法
  • DOI:
    10.1109/lra.2022.3145977
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Stalley, Sean O.;Wang, Dingyu;Dasarathy, Gautam;Lipor, John
  • 通讯作者:
    Lipor, John
Predicting Geothermal Favorability in the Western United States by Using Machine Learning: Addressing Challenges and Developing Solutions
利用机器学习预测美国西部地热有利性:应对挑战并开发解决方案
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Lipor其他文献

Evaluation of Optic Nerve Sheath Diameter Measurements in Eye Phantom Imaging using POCUS and AI
使用 POCUS 和 AI 评估眼模成像中的视神经鞘直径测量
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hadi Khazaei;Danesh Khazaei;Nashrah Junejo;John Lipor;NG John;F. Etesami
  • 通讯作者:
    F. Etesami
Vessel trajectory prediction with recurrent neural networks: An evaluation of datasets, features, and architectures
使用循环神经网络的船舶轨迹预测:对数据集、特征和架构的评估
  • DOI:
    10.1016/j.joes.2024.01.002
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    11.800
  • 作者:
    Isaac Slaughter;Jagir Laxmichand Charla;Martin Siderius;John Lipor
  • 通讯作者:
    John Lipor
Adaptive Sampling for Seabed Identification from Ambient Acoustic Noise
环境声噪声海底识别的自适应采样

John Lipor的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Lipor', 18)}}的其他基金

CRII: CIF: Robust, Principled, and Practical Adaptive Sampling with Mobile Sensors
CRII:CIF:使用移动传感器进行稳健、有原则且实用的自适应采样
  • 批准号:
    1850404
  • 财政年份:
    2019
  • 资助金额:
    $ 55.49万
  • 项目类别:
    Standard Grant

相似海外基金

Building recovery and resilience in severe mental illness: Leveraging the role of social determinants in illness trajectories and interventions
建立严重精神疾病的康复和复原力:利用社会决定因素在疾病轨迹和干预措施中的作用
  • 批准号:
    MR/Z503514/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55.49万
  • 项目类别:
    Research Grant
Leveraging the synergy between experiment and computation to understand the origins of chalcogen bonding
利用实验和计算之间的协同作用来了解硫族键合的起源
  • 批准号:
    EP/Y00244X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55.49万
  • 项目类别:
    Research Grant
CSR: Small: Leveraging Physical Side-Channels for Good
CSR:小:利用物理侧通道做好事
  • 批准号:
    2312089
  • 财政年份:
    2024
  • 资助金额:
    $ 55.49万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
  • 批准号:
    2317681
  • 财政年份:
    2024
  • 资助金额:
    $ 55.49万
  • 项目类别:
    Standard Grant
CAREER: Leveraging Plastic Deformation Mechanisms Interactions in Metallic Materials to Access Extraordinary Fatigue Strength.
职业:利用金属材料中的塑性变形机制相互作用来获得非凡的疲劳强度。
  • 批准号:
    2338346
  • 财政年份:
    2024
  • 资助金额:
    $ 55.49万
  • 项目类别:
    Continuing Grant
Nonlocal Elastic Metamaterials: Leveraging Intentional Nonlocality to Design Programmable Structures
非局域弹性超材料:利用有意的非局域性来设计可编程结构
  • 批准号:
    2330957
  • 财政年份:
    2024
  • 资助金额:
    $ 55.49万
  • 项目类别:
    Standard Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:Cyber​​AI:利用人工智能实现智能系统的网络安全解决方案
  • 批准号:
    2349104
  • 财政年份:
    2024
  • 资助金额:
    $ 55.49万
  • 项目类别:
    Standard Grant
HSI Implementation and Evaluation Project: Leveraging Social Psychology Interventions to Promote First Year STEM Persistence
HSI 实施和评估项目:利用社会心理学干预措施促进第一年 STEM 的坚持
  • 批准号:
    2345273
  • 财政年份:
    2024
  • 资助金额:
    $ 55.49万
  • 项目类别:
    Standard Grant
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
  • 批准号:
    2307222
  • 财政年份:
    2024
  • 资助金额:
    $ 55.49万
  • 项目类别:
    Standard Grant
CAREER: Leveraging Data Science & Policy to Promote Sustainable Development Via Resource Recovery
职业:利用数据科学
  • 批准号:
    2339025
  • 财政年份:
    2024
  • 资助金额:
    $ 55.49万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了