CAREER: Nanoparticle-mediated genome engineering of plants and plastids

职业:纳米颗粒介导的植物和质体基因组工程

基本信息

  • 批准号:
    2046159
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-01-01 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

Genetic engineering of plants is at the core of sustainability efforts, drug synthesis, and agricultural engineering. The predominant bottleneck facing efficient plant genetic engineering is biomolecule delivery into plant cells through the rigid and multi-layered cell wall. This constraint limits the species of plants that can be genetically engineered. In this project, nanoparticles will be developed to deliver genetic material into the plant chloroplast, which is a gene-containing organelle responsible for photosynthesis. The project will first focus on the development of molecular biology tools and nanoparticles that can traverse the plant cell wall and deliver biomolecules into plant chloroplasts. Next, the project will test efficiencies of nanoparticle-based chloroplast delivery tools and compare them with conventional tools, with the goal of achieving higher genetic transformation efficiencies. The project will conclude by incorporating genome-editing biomolecules into nanoparticles to demonstrate genome editing in the chloroplast. The potential impact of the proposed approach will be to enable genetic engineering of the plant chloroplast, thus enabling the discovery and study of chloroplast genes and the potential use of chloroplasts for producing valuable protein products. For outreach and education, an international virtual conference will be developed that brings together scientists, policymakers, and the public to discuss scientific topics and the dissemination of literature in the media. An undergraduate course will be developed to expose undergraduate students to the peer-review process and hypothesis-driven research, and high school teachers will be brought into the laboratory for hands-on research training during the summer. These efforts will increase scientific literacy in the public, universities, and schools.Despite the importance of creating transgenic plants, plant systems, particularly non-model plant species, remain difficult to genetically transform. The dominant bottleneck to plant transformation is the delivery of the molecular biology tools needed for plant transformation or gene silencing: DNA, RNA, and protein, across the plant cell wall, particularly for chloroplast-targeted genetic manipulation studies. In this project, nanoparticles will be developed and functionalized to adsorb and deliver plasmid DNA to plant chloroplasts in a species-independent and high-efficiency manner. To this end, in Objective 1, genome editing plasmid DNA vectors will be developed and delivered to model plant leaves and tissues to test genome editing efficiencies and to confirm a lack of transgene integration. This objective will confirm the ability of nanomaterials for chloroplast genetic transformation with efficiencies that surpass those of conventional tools. Objective 2 will subsequently develop, and codon optimize a luciferase-based plasmid reporter system to enable expression of luciferase in plant chloroplasts, with a goal of exceeding transformation efficiencies achievable with biolistic DNA delivery. Lastly, in Objective 3, a genome editing plasmid will be developed based on knowledge gained in Objectives 1 and 2 to target endogenous chloroplast genes in both model and non-model plant species. The ability to genetically manipulate chloroplasts, particularly in non-model plant species, will broaden the range of plants that can currently be studied. Genetic manipulation of the plant chloroplast genome will in turn uniquely enable the study of genes coding for most photosynthetic proteins, especially in non-model plants. This project will also leverage features unique to the chloroplast including a lack of gene silencing pathways, to enable high efficiency expression of transgenes. This latter feature makes chloroplasts an attractive target for biosynthetic production of commodity chemicals, drugs, and even larger protein products such as antibodies and biologics. Orthogonally, because the proposed approach is non-pathogenic in nature, the broader impact of this approach could enable more seamless regulatory oversight of transformed plant tissues in crop species. This project will also develop three efforts to increase scientific literacy. In the first effort, an international virtual conference will be developed that brings together scientists, policymakers, and the public to discuss scientific topics and the dissemination of literature in the media. In the second effort, an undergraduate course will be developed to expose undergraduate students to the peer-review process and hypothesis-driven research. In the third effort, high school teachers will be brought into the laboratory for hands-on research training during the summer. These efforts will increase scientific literacy in the public, universities, and schools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
植物基因工程是可持续发展、药物合成和农业工程的核心。高效植物基因工程面临的主要瓶颈是生物分子通过坚硬的多层细胞壁进入植物细胞。这一限制限制了可以进行基因工程改造的植物种类。在这个项目中,纳米粒子将被开发用于将遗传物质输送到植物叶绿体中,叶绿体是一个负责光合作用的含有基因的细胞器。该项目将首先专注于开发分子生物学工具和纳米颗粒,这些工具和纳米颗粒可以穿过植物细胞壁,并将生物分子输送到植物叶绿体中。接下来,该项目将测试基于纳米颗粒的叶绿体传递工具的效率,并将其与传统工具进行比较,目标是实现更高的遗传转化效率。该项目最后将把基因组编辑生物分子整合到纳米颗粒中,以展示叶绿体中的基因组编辑。该方法的潜在影响将是使植物叶绿体的基因工程成为可能,从而使叶绿体基因的发现和研究以及叶绿体生产有价值的蛋白质产品的潜在用途成为可能。在外联和教育方面,将开发一个国际虚拟会议,将科学家、决策者和公众聚集在一起,讨论科学主题和在媒体上传播文献。将开设一门本科课程,让本科生接触同行评议过程和假设驱动的研究,并在夏季将高中教师带到实验室进行实践研究培训。这些努力将提高公众、大学和学校的科学素养。尽管创造转基因植物很重要,但植物系统,特别是非模式植物物种,仍然难以进行基因转化。植物转化的主要瓶颈是植物转化或基因沉默所需的分子生物学工具的传递:DNA, RNA和蛋白质,通过植物细胞壁,特别是针对叶绿体的遗传操作研究。在这个项目中,纳米颗粒将被开发和功能化,以一种独立于物种的高效方式吸附和传递质粒DNA到植物叶绿体中。为此,在目标1中,将开发基因组编辑质粒DNA载体,并将其传递到模型植物叶片和组织中,以测试基因组编辑效率,并确认缺乏转基因整合。这一目标将证实纳米材料在叶绿体遗传转化方面的能力,其效率超过传统工具。目标2随后将开发并优化基于荧光素酶的质粒报告系统,使荧光素酶能够在植物叶绿体中表达,其目标是超越生物DNA递送所能实现的转化效率。最后,在目标3中,将基于目标1和2中获得的知识开发基因组编辑质粒,以靶定模式和非模式植物物种的内源叶绿体基因。基因操纵叶绿体的能力,特别是在非模式植物物种中,将扩大目前可以研究的植物范围。植物叶绿体基因组的遗传操作反过来将使研究大多数光合作用蛋白的基因编码成为可能,特别是在非模式植物中。该项目还将利用叶绿体的独特特征,包括缺乏基因沉默途径,以实现转基因的高效表达。后一种特性使叶绿体成为生物合成生产商品化学品、药物甚至更大的蛋白质产品(如抗体和生物制剂)的有吸引力的目标。另外,由于所提出的方法在本质上是非致病性的,因此这种方法的广泛影响可以使对作物物种中转化的植物组织的更无缝的监管成为可能。该项目还将开展三项工作来提高科学素养。在第一项努力中,将开发一个国际虚拟会议,将科学家、决策者和公众聚集在一起,讨论科学主题和在媒体上传播文献。在第二项努力中,将开设一门本科课程,让本科生接触到同行评审过程和假设驱动的研究。在第三项努力中,高中教师将在夏季进入实验室进行实践研究培训。这些努力将提高公众、大学和学校的科学素养。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Markita Landry其他文献

Fluorescent Nanosensors for Two-Photon Infrared Imaging of Dopamine Release in Brain Tissue
  • DOI:
    10.1016/j.bpj.2017.11.1072
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Jackson T. Del Bonis-O'Donnell;Ralph Page;Abraham Beyene;Eric Tindall;Ian McFarlane;Markita Landry
  • 通讯作者:
    Markita Landry

Markita Landry的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Markita Landry', 18)}}的其他基金

TRTech-PGR: NSF BSF - Recombining Allelic Diversity via Genome Editing for Dissecting Complex Plant Traits
TRTech-PGR:NSF BSF - 通过基因组编辑重组等位基因多样性以剖析复杂的植物性状
  • 批准号:
    2034264
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
EAGER: Bio-Mimetic Molecular Machines Driven by Brownian Motion of Synthetic Peptoid Polymers
EAGER:由合成类肽聚合物的布朗运动驱动的仿生分子机器
  • 批准号:
    1733575
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NSF Postdoctoral Fellowship in Biology FY 2013
2013 财年 NSF 生物学博士后奖学金
  • 批准号:
    1306229
  • 财政年份:
    2013
  • 资助金额:
    $ 50万
  • 项目类别:
    Fellowship Award

相似海外基金

Lipid nanoparticle-mediated Inhalation delivery of anti-viral nucleic acids
脂质纳米颗粒介导的抗病毒核酸的吸入递送
  • 批准号:
    502577
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
Nanoparticle-mediated placental imaging and magnetic hyperthermia for management of ectopic pregnancy
纳米颗粒介导的胎盘成像和磁热疗治疗异位妊娠
  • 批准号:
    10639419
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Nanoparticle-mediated delivery of a base editor for in utero treatment of Canavan Disease
纳米颗粒介导的碱基编辑器递送用于子宫内治疗卡纳万病
  • 批准号:
    10727872
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Efficacy and safety of nanoparticle mediated placental gene therapy in nonhuman primates
纳米颗粒介导的胎盘基因治疗对非人灵长类动物的功效和安全性
  • 批准号:
    10752759
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Evaluation and optimization of lipid nanoparticle-mediated prime editing in vivo
脂质纳米颗粒介导的体内引物编辑的评估和优化
  • 批准号:
    486211
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship Programs
Nanoparticle-mediated targeting of hepatic macrophages to mitigate inflammation in alcoholic liver disease
纳米颗粒介导的肝巨噬细胞靶向减轻酒精性肝病炎症
  • 批准号:
    10352578
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
Making donated lungs infected with cytomegalovirus safer: nanoparticle-mediated deletion of essential viral genes prior to transplant using ex vivo lung perfusion
使感染巨细胞病毒的捐赠肺更安全:使用离体肺灌注在移植前通过纳米颗粒介导删除必需病毒基因
  • 批准号:
    465080
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Operating Grants
Visible Light Mediated Refinery Waste Degradation using Nanoparticle/Niobium Oxide Composites
使用纳米粒子/氧化铌复合材料进行可见光介导的炼油厂废物降解
  • 批准号:
    572271-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    University Undergraduate Student Research Awards
Remodeling host immunity in oral cancer with personalized RNA nanoparticle vaccines
利用个性化 RNA 纳米颗粒疫苗重塑口腔癌宿主免疫力
  • 批准号:
    10427461
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
Remodeling host immunity in oral cancer with personalized RNA nanoparticle vaccines
利用个性化 RNA 纳米颗粒疫苗重塑口腔癌宿主免疫力
  • 批准号:
    10633111
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了