CAREER: Robust, Interpretable, and Fair Allocation of Scarce Resources in Socially Sensitive Settings

职业:在社会敏感环境中稳健、可解释和公平分配稀缺资源

基本信息

  • 批准号:
    2046230
  • 负责人:
  • 金额:
    $ 51.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-05-01 至 2026-04-30
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career Development Program (CAREER) grant will contribute to the advancement of national prosperity and economic welfare by improving critical public sector systems that allocate scarce resources to satisfy basic needs. These systems operate in complex, uncertain, time-dependent environments, and as public sector services, they must be transparent, satisfy potentially conflicting stakeholder objectives, and be constructed to perform as intended in a variety of environments when deployed. To address these problems, this project constructs a computationally efficient framework to design policies that are robust to uncertainty, interpretable, and fair. The systems will learn and correctly balance stakeholder value judgements and account for underlying biases, incentives, and disparities. The central use case that will guide the research will focus on allocating scarce housing resources to those experiencing homelessness. The project will be facilitated by a collaboration with the Los Angeles Homeless Services Authority and with homelessness experts. The plan to integrate research and education includes the design of a new course on “Analytics for Social Impact” and of an online experimental platform to educate students and the general public about resource allocation in socially sensitive settings. Outreach activities will be focused on the promotion of diversity, equity, and inclusion in STEM fields and include a long-term partnership with the STEM Academy of Hollywood and a new collaboration with the Code.org non-profit.This research will advance data-driven robust optimization models that cope well with information incompleteness and non-stationarity, and derive tractable models that offer probabilistic performance guarantees. This project will provide a methodology for learning and aggregating incomplete and conflicting stakeholder preferences and offer new fair machine learning (ML) algorithms. The research will develop a novel robust queuing theory framework that leverages learned preferences, outcome predictions, and observational data to design policies guaranteed to work as planned when deployed in the open world. Finally, the project will provide tools that help committees evaluate policies, anticipate their consequences, and understand the trade-offs between fairness, efficiency, and interpretability. The framework contributes to the robust optimization literature in several regards. It provides a modeling and solution scheme for multi-stage robust optimization problems with decision-dependent information discovery, exponentially many contingencies, and non-linear objective. It is the first study on models and methods for robust and fair ML. Finally, it provides a method for performing counterfactual policy evaluation and optimization from noisy observational data in the robust queuing theory framework. The research contributes to AI and marketing with new optimization-based techniques for preference elicitation and aggregation, to ML with general purpose robust and fair tools, and to queuing theory with causal inference-based approaches for system evaluation and design.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项教师早期职业发展计划(Career)资助将通过改善分配稀缺资源以满足基本需求的关键公共部门系统,为促进国家繁荣和经济福利做出贡献。这些系统在复杂、不确定、时间依赖的环境中运行,作为公共部门服务,它们必须是透明的,满足潜在冲突的利益相关者目标,并且在部署时按照预期在各种环境中运行。为了解决这些问题,本项目构建了一个计算效率高的框架,以设计对不确定性具有鲁棒性、可解释性和公平性的政策。这些系统将学习并正确平衡利益相关者的价值判断,并解释潜在的偏见、激励和差异。指导研究的中心用例将侧重于将稀缺的住房资源分配给无家可归的人。该项目将通过与洛杉矶无家可归者服务管理局和无家可归问题专家的合作来促进。整合研究和教育的计划包括设计一门关于“社会影响分析”的新课程,以及一个在线实验平台,以教育学生和公众在社会敏感环境下的资源分配。外展活动将侧重于促进STEM领域的多样性、公平性和包容性,包括与好莱坞STEM学院的长期合作伙伴关系,以及与Code.org非营利组织的新合作。本研究将推进数据驱动的鲁棒优化模型,该模型可以很好地处理信息不完整性和非平稳性,并推导出可处理的模型,提供概率性能保证。该项目将提供一种学习和汇总不完整和冲突的利益相关者偏好的方法,并提供新的公平机器学习(ML)算法。该研究将开发一种新的强大的排队理论框架,该框架利用学习偏好、结果预测和观察数据来设计保证在开放世界中部署时按计划工作的策略。最后,该项目将提供工具,帮助委员会评估政策,预测其后果,并了解公平、效率和可解释性之间的权衡。该框架在几个方面为鲁棒优化文献做出了贡献。为具有决策依赖信息发现、指数级多偶然性和非线性目标的多阶段鲁棒优化问题提供了一种建模和求解方案。这是对鲁棒和公平机器学习模型和方法的首次研究。最后,它提供了一种在鲁棒排队论框架下从噪声观测数据中执行反事实策略评估和优化的方法。该研究为人工智能和市场营销提供了新的基于优化的偏好激发和聚合技术,为ML提供了通用的健壮和公平的工具,为排队论提供了基于因果推理的系统评估和设计方法。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning Resource Allocation Policies from Observational Data with an Application to Homeless Services Delivery
从观测数据学习资源分配政策及其在无家可归者服务提供中的应用
  • DOI:
    10.1145/3531146.3533181
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rahmattalabi, Aida;Vayanos, Phebe;Dullerud, Kathryn;Rice, Eric
  • 通讯作者:
    Rice, Eric
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Phebe Vayanos其他文献

Phebe Vayanos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Phebe Vayanos', 18)}}的其他基金

Preserving Diversity via Robust Optimization
通过稳健优化保持多样性
  • 批准号:
    1763108
  • 财政年份:
    2018
  • 资助金额:
    $ 51.97万
  • 项目类别:
    Standard Grant

相似国自然基金

复杂环境下的无人机鲁棒定位与智能决策技术研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
鲁棒判别分析的最优化模型及其算法研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
融合副语言信息的鲁棒多模态情感识别关键技术研究
  • 批准号:
    QN25F020077
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
全时复杂环境下多模态协同的移动机器人鲁棒感知方法研究
  • 批准号:
    2025JJ50376
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
面向对抗场景自适应的鲁棒高效对抗训练方法研究
  • 批准号:
    2025JJ40066
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
高维度非厄米奇异空间增强鲁棒性的超灵敏传感研究
  • 批准号:
    2025JJ50047
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
鲁棒多变量农田土壤湿度预测方法研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
高磁路饱和永磁电机的在线鲁棒磁链分 布估计及MTPA控制
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
加密流量分类模型的鲁棒性研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
基于表面超疏水微纳结构的高鲁棒性自 解耦应变传感器的性能优化与机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

22-BBSRC/NSF-BIO - Interpretable & Noise-robust Machine Learning for Neurophysiology
22-BBSRC/NSF-BIO - 可解释
  • 批准号:
    BB/Y008758/1
  • 财政年份:
    2024
  • 资助金额:
    $ 51.97万
  • 项目类别:
    Research Grant
UKRI/BBSRC-NSF/BIO: Interpretable and Noise-Robust Machine Learning for Neurophysiology
UKRI/BBSRC-NSF/BIO:用于神经生理学的可解释且抗噪声的机器学习
  • 批准号:
    2321840
  • 财政年份:
    2023
  • 资助金额:
    $ 51.97万
  • 项目类别:
    Continuing Grant
CAREER: Interpretable and Robust Machine Learning Models: Analysis and Algorithms
职业:可解释且稳健的机器学习模型:分析和算法
  • 批准号:
    2239787
  • 财政年份:
    2023
  • 资助金额:
    $ 51.97万
  • 项目类别:
    Continuing Grant
Robust, valid and interpretable deep learning for quantitative imaging
用于定量成像的稳健、有效且可解释的深度学习
  • 批准号:
    LP200301393
  • 财政年份:
    2022
  • 资助金额:
    $ 51.97万
  • 项目类别:
    Linkage Projects
EAGER: Towards robust, interpretable deep learning via communication theory and neuro-inspiration
EAGER:通过沟通理论和神经灵感实现稳健、可解释的深度学习
  • 批准号:
    2224263
  • 财政年份:
    2022
  • 资助金额:
    $ 51.97万
  • 项目类别:
    Standard Grant
Development of Perturbation Robust and Interpretable Deep Learning Models and Evaluation of Their Interpretability
扰动鲁棒且可解释的深度学习模型的开发及其可解释性的评估
  • 批准号:
    21J14143
  • 财政年份:
    2021
  • 资助金额:
    $ 51.97万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Collaborative Research: Transferable, Hierarchical, Expressive, Optimal, Robust, Interpretable Networks
协作研究:可转移、分层、富有表现力、最优、稳健、可解释的网络
  • 批准号:
    2032014
  • 财政年份:
    2020
  • 资助金额:
    $ 51.97万
  • 项目类别:
    Continuing Grant
Collaborative Research: Transferable, Hierarchical, Expressive, Optimal, Robust, Interpretable Networks
协作研究:可转移、分层、富有表现力、最优、稳健、可解释的网络
  • 批准号:
    2031899
  • 财政年份:
    2020
  • 资助金额:
    $ 51.97万
  • 项目类别:
    Continuing Grant
Collaborative Research: Transferable, Hierarchical, Expressive, Optimal, Robust, Interpretable Networks
协作研究:可转移、分层、富有表现力、最优、稳健、可解释的网络
  • 批准号:
    2031985
  • 财政年份:
    2020
  • 资助金额:
    $ 51.97万
  • 项目类别:
    Continuing Grant
Collaborative Research: Transferable, Hierarchical, Expressive, Optimal, Robust, Interpretable Networks
协作研究:可转移、分层、富有表现力、最优、稳健、可解释的网络
  • 批准号:
    2031849
  • 财政年份:
    2020
  • 资助金额:
    $ 51.97万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了