CAREER: Autonomous Targeted Software Verification
职业:自主目标软件验证
基本信息
- 批准号:2046403
- 负责人:
- 金额:$ 47.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Today's society is highly dependent on software-based systems and highly vulnerable to the consequence of software defects. A high percentage of software costs are consumed by efforts to find and fix software defects. It is now common to apply defect-finding techniques continuously throughout development and operation of software systems, reviewing every code change (Modern Code Review, abbreviated MCR) and testing the software for defects continuously (Continuous Integration, abbreviated CI). Unfortunately, these continuous defect-finding efforts incur high cost for software developers, and they provide limited success. The goal of this project is to reduce the unfruitful, manual effort that software developers spend on code reviews and continuous integration, while keeping as many of their fruitful tasks as possible. To achieve this goal, this project will develop techniques to automatically prioritize review and integration actions, giving higher priority to those that are more likely to find defects. This project will advance the understanding of what software changes are risky, which ones are better accepted by developers, and what makes developers trust automatically-targeted defect-finding techniques. It will also produce many techniques and tools to enable software engineers to find more software defects in less time. This project will benefit society by improving software reliability, as well as reducing its cost.The project will conduct interviews to survey software engineers to understand the human factors that would impact the adoption of automated targeted MCR and CI techniques. The project works toward the achievement of three objectives using machine learning and search-based algorithms: reduce the size of the code changes for which MCR and CI get executed, by determining which code sections are unlikely to improve; automatically carry out actions resulting from MCR and CI. The project will also investigate how to generate automated explanations of the decisions made using these techniques. The long-term vision is to provide an integrated system that automatically reduces the number and size of MCR and CI tasks, automatically performs some of them, and explains its automated decisions to software engineers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当今社会高度依赖基于软件的系统,并且非常容易受到软件缺陷后果的影响。发现和修复软件缺陷的努力消耗了很高比例的软件成本。现在,在软件系统的开发和操作过程中不断地应用缺陷发现技术是很常见的,审查每一次代码更改(现代代码审查,简称MCR),并持续测试软件的缺陷(持续集成,简称CI)。不幸的是,这些持续的缺陷查找工作给软件开发人员带来了高昂的成本,而且它们提供的成功有限。这个项目的目标是减少软件开发人员在代码审查和持续集成上花费的徒劳的手动工作,同时尽可能多地保留他们富有成效的任务。为了实现这一目标,该项目将开发技术来自动确定审查和集成操作的优先顺序,将更高的优先级给予那些更有可能发现缺陷的操作。这个项目将促进对哪些软件更改是有风险的、哪些更改更容易被开发人员接受以及什么让开发人员信任自动定位的缺陷查找技术的理解。它还将产生许多技术和工具,使软件工程师能够在更短的时间内发现更多的软件缺陷。该项目将通过提高软件可靠性和降低成本来造福社会。该项目将对软件工程师进行访谈,以了解影响采用自动化定向MCR和CI技术的人为因素。该项目使用机器学习和基于搜索的算法致力于实现三个目标:通过确定哪些代码段不太可能改进来减少执行MCR和CI的代码更改的大小;自动执行MCR和CI产生的操作。该项目还将调查如何生成使用这些技术做出的决策的自动解释。长期愿景是提供一个集成系统,自动减少MCR和CI任务的数量和规模,自动执行其中一些任务,并向软件工程师解释其自动决策。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Which builds are really safe to skip? Maximizing failure observation for build selection in continuous integration
哪些构建确实可以安全地跳过?
- DOI:10.1016/j.jss.2022.111292
- 发表时间:2022
- 期刊:
- 影响因子:3.5
- 作者:Jin, Xianhao;Servant, Francisco
- 通讯作者:Servant, Francisco
Minimizing the Side Effect of Cost-saving Build Selection in Continuous Integration
最大限度地减少持续集成中节省成本的构建选择的副作用
- DOI:10.5281/zenodo.4007140
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:null, Anonymous2
- 通讯作者:null, Anonymous2
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Francisco Servant其他文献
Assessing Incremental Testing Practices and Their Impact on Project Outcomes
评估增量测试实践及其对项目结果的影响
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Ayaan M. Kazerouni;C. Shaffer;S. Edwards;Francisco Servant - 通讯作者:
Francisco Servant
Supporting bug investigation using history analysis
使用历史分析支持错误调查
- DOI:
10.1109/ase.2013.6693150 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Francisco Servant - 通讯作者:
Francisco Servant
Developers' need for the rationale of code commits: An in-breadth and in-depth study
开发者对代码提交原理的需求:广泛而深入的研究
- DOI:
10.1016/j.jss.2022.111320 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Khadijah Al Safwan;Mohammed Elarnaoty;Francisco Servant - 通讯作者:
Francisco Servant
A Characterization and Partial Automation of the Multi-revision, Fine-grained Analysis of Code History as an Efficient and Accurate Mechanism to Support Software Development
代码历史的多修订、细粒度分析的表征和部分自动化作为支持软件开发的高效、准确的机制
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Francisco Servant - 通讯作者:
Francisco Servant
The Hidden Cost of Code Completion: Understanding the Impact of the Recommendation-List Length on its Efficiency
代码完成的隐藏成本:了解推荐列表长度对其效率的影响
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Xianhao Jin;Francisco Servant - 通讯作者:
Francisco Servant
Francisco Servant的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Advanced AI and RobotIcS for autonomous task pErformance
先进的人工智能和机器人控制系统可实现自主任务执行
- 批准号:
10110390 - 财政年份:2024
- 资助金额:
$ 47.04万 - 项目类别:
EU-Funded
I-Corps: Networked Autonomous-humanoid Security Robot
I-Corps:网络化自主人形安全机器人
- 批准号:
2348931 - 财政年份:2024
- 资助金额:
$ 47.04万 - 项目类别:
Standard Grant
CPS: Small: NSF-DST: Autonomous Operations of Multi-UAV Uncrewed Aerial Systems using Onboard Sensing to Monitor and Track Natural Disaster Events
CPS:小型:NSF-DST:使用机载传感监测和跟踪自然灾害事件的多无人机无人航空系统自主操作
- 批准号:
2343062 - 财政年份:2024
- 资助金额:
$ 47.04万 - 项目类别:
Standard Grant
I-Corps: Autonomous Aquabots for Water Main Inspections
I-Corps:用于水管检查的自主 Aquabot
- 批准号:
2345478 - 财政年份:2024
- 资助金额:
$ 47.04万 - 项目类别:
Standard Grant
I-Corps: Translation potential of a semi-autonomous feedback device to enable manual ventilation
I-Corps:半自主反馈设备的翻译潜力,以实现手动通气
- 批准号:
2420392 - 财政年份:2024
- 资助金额:
$ 47.04万 - 项目类别:
Standard Grant
CAREER: Designing Autonomous Battery-Free Robotic Sensors
职业:设计自主无电池机器人传感器
- 批准号:
2338736 - 财政年份:2024
- 资助金额:
$ 47.04万 - 项目类别:
Continuing Grant
SBIR Phase I: Optimizing Safety and Fuel Efficiency in Autonomous Rendezvous and Proximity Operations (RPO) of Uncooperative Objects
SBIR 第一阶段:优化不合作物体自主交会和邻近操作 (RPO) 的安全性和燃油效率
- 批准号:
2311379 - 财政年份:2024
- 资助金额:
$ 47.04万 - 项目类别:
Standard Grant
Trusted Interaction for Autonomous Vehicles in a Smart City
智能城市中自动驾驶汽车的可信交互
- 批准号:
24K15045 - 财政年份:2024
- 资助金额:
$ 47.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Probabilistic Inference Based Utility Evaluation and Path Generation for Active Autonomous Exploration of USVs in Unknown Confined Marine Environments
基于概率推理的效用评估和路径生成,用于未知受限海洋环境中 USV 主动自主探索
- 批准号:
EP/Y000862/1 - 财政年份:2024
- 资助金额:
$ 47.04万 - 项目类别:
Research Grant
Hybrid optimisation for coordinating autonomous trucks and drones
用于协调自动卡车和无人机的混合优化
- 批准号:
DE240100042 - 财政年份:2024
- 资助金额:
$ 47.04万 - 项目类别:
Discovery Early Career Researcher Award