CAREER: High-Agreement Crowdsourcing for Difficult Language-Understanding Tasks

职业:针对困难的语言理解任务的高度一致的众包

基本信息

  • 批准号:
    2046556
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

When engineers build modern artificial intelligence (AI) systems for language problems like question answering, they use datasets of examples to teach the systems how to solve the problem, rather than programming the systems directly. These datasets of examples are often collected through crowd work, where a large population of non-specialists are hired to come up with example answers to questions, example summaries of documents, or the like. Having a diverse group of people provide data for pay is meant to make it possible to build specialized language technology systems quickly, and to ensure that they can cover a wide range of styles of language, but this has not always worked well in practice: Crowd work is often set up in a way that forces participants to work quickly and sloppily, and produces data that’s ineffective at teaching machines to do what we want. This award supports research that aims to fix this, by developing and evaluating best practices for crowd worker training, feedback, and bonus pay to help crowd-worker dataset creators develop professional skills and produce better data that will lead to truly effective language technologies. The project award will also support parallel efforts at training new scientists and engineers, including programming targeting advanced technical students and outreach events targeting newcomers to the field.Technically, the project will establish a scientifically-grounded set of practices for crowdsourced data collection for natural language understanding tasks like reading comprehension question answering, coreference resolution, and natural language inference, with a focus on methods that can ensure that the resulting data is diverse, challenging, and high-quality in the face of obstacles posed by subjectivity and legitimate annotator disagreements. The main experiments to isolate the effect of several novel techniques for data collection, covering the training, feedback, and incentive structures used in crowdsourced data collection. A complementary thread will evaluate and refine task designs with the goal of identifying the task formulations that best isolate and reinforce model abilities to understand and reason with texts, informed by large experimental surveys of existing tasks. The accompanying education program will scale up processes for research mentorship to reach a larger fraction of the diverse and qualified undergraduate and graduate student population at New York University, both through seminars and taught research methods courses. The accompanying outreach plan will support the development of a recurring workshop series for early-year undergraduates tentatively interested in careers in AI and language technology, recruiting especially from groups underrepresented in computing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当工程师为语言问题(如问答)构建现代人工智能(AI)系统时,他们使用示例数据集来教系统如何解决问题,而不是直接对系统进行编程。这些示例的数据集通常通过群体工作来收集,其中雇用大量非专业人员来提出问题的示例答案、文档的示例摘要等。让不同的人群提供薪酬数据是为了能够快速构建专业的语言技术系统,并确保它们能够覆盖广泛的语言风格,但这在实践中并不总是有效:人群工作的设置方式往往迫使参与者快速而草率地工作,并产生无法教会机器做我们想要做的事情的数据。该奖项支持旨在解决这一问题的研究,通过开发和评估人群工作者培训,反馈和奖金支付的最佳实践,帮助人群工作者数据集创建者发展专业技能并产生更好的数据,从而实现真正有效的语言技术。该项目奖还将支持培训新科学家和工程师的平行努力,包括针对高级技术学生的编程和针对该领域新人的外展活动。从技术上讲,该项目将建立一套科学的实践,用于自然语言理解任务的众包数据收集,如阅读理解问题回答,共指消解和自然语言推理,重点是可以确保所产生的数据是多样化的,具有挑战性的,以及面对主观性和合法注释者分歧所造成的障碍的高质量的方法。主要的实验,以隔离数据收集的几种新技术的效果,包括培训,反馈和激励结构中使用的众包数据收集。一个补充的线程将评估和完善任务设计,目标是确定任务的制定,最好的隔离和加强模型的能力,理解和推理的文本,通过现有任务的大型实验调查。伴随的教育计划将扩大研究导师的过程,以达到更大比例的多元化和合格的本科生和研究生人口在纽约大学,无论是通过研讨会和教授的研究方法课程。伴随的外展计划将支持为对人工智能和语言技术职业暂时感兴趣的早期本科生开发一个经常性的研讨会系列,特别是从计算领域代表性不足的群体中招募。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Dangers of Underclaiming: Reasons for Caution When Reporting How NLP Systems Fail
  • DOI:
    10.18653/v1/2022.acl-long.516
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sam Bowman
  • 通讯作者:
    Sam Bowman
Fine-Tuned Transformers Show Clusters of Similar Representations Across Layers
  • DOI:
    10.18653/v1/2021.blackboxnlp-1.42
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jason Phang;Haokun Liu;Samuel R. Bowman
  • 通讯作者:
    Jason Phang;Haokun Liu;Samuel R. Bowman
Single-Turn Debate Does Not Help Humans Answer Hard Reading-Comprehension Questions
单轮辩论无助于人类回答困难的阅读理解问题
BBQ: A hand-built bias benchmark for question answering
  • DOI:
    10.18653/v1/2022.findings-acl.165
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alicia Parrish;Angelica Chen;Nikita Nangia;Vishakh Padmakumar;Jason Phang;Jana Thompson;Phu Mon Htut;Sam Bowman
  • 通讯作者:
    Alicia Parrish;Angelica Chen;Nikita Nangia;Vishakh Padmakumar;Jason Phang;Jana Thompson;Phu Mon Htut;Sam Bowman
Does Putting a Linguist in the Loop Improve NLU Data Collection?
让语言学家参与其中是否可以改善 NLU 数据收集?
  • DOI:
    10.18653/v1/2021.findings-emnlp.421
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Parrish, Alicia;Huang, William;Agha, Omar;Lee, Soo-Hwan;Nangia, Nikita;Warstadt, Alexia;Aggarwal, Karmanya;Allaway, Emily;Linzen, Tal;Bowman, Samuel R.
  • 通讯作者:
    Bowman, Samuel R.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samuel Bowman其他文献

FarFetched: An Entity-centric Approach for Reasoning on Textually Represented Environments
FarFetched:一种以实体为中心的文本表示环境推理方法
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Colin Raffel;Noam M. Shazeer;A. Roberts;K. Lee;Sharan Narang;Michael Matena;Yanqi;Wei Zhou;J. LiPeter;Liu. 2020;Exploring;Jim Webber;A. programmatic;Adina Williams;Nikita Nangia;Samuel Bowman
  • 通讯作者:
    Samuel Bowman
Reactive Transport and Péclet Number Analysis of Hydrogen Flux Pathways in Uniform Clay Matrix: Implications for Underground Storage
  • DOI:
    10.1007/s11242-025-02200-5
  • 发表时间:
    2025-07-03
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Samuel Bowman;Arkajyoti Pathak;Shikha Sharma
  • 通讯作者:
    Shikha Sharma
Effect of Ionic Strength on H2O and Si-Species Stability Field Geometry in pH-Eh Space
pH-Eh 空间中离子强度对 H2O 和 Si 物种稳定场几何形状的影响
  • DOI:
    10.1007/s10498-023-09417-0
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Samuel Bowman;Arkajyoti Pathak;V. Agrawal;Shikha Sharma
  • 通讯作者:
    Shikha Sharma
What Makes Machine Reading Comprehension Questions Difficult? Investigating Variation in Passage Sources and Question Types
是什么让机器阅读理解问题难以调查文章来源和问题类型的变化?
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Susan Bartlett;Grzegorz Kondrak;Max Bartolo;Alastair Roberts;Johannes Welbl;Steven Bird;Ewan Klein;E. Loper;Samuel Bowman;George Dahl. 2021;What;Chao Pang;Junyuan Shang;Jiaxiang Liu;Xuyi Chen;Yanbin Zhao;Yuxiang Lu;Weixin Liu;Z. Wu;Weibao Gong;Jianzhong Liang;Zhizhou Shang;Peng Sun;Ouyang Xuan;Dianhai;Hao Tian;Hua Wu;Haifeng Wang;Adam Trischler;Tong Wang;Xingdi Yuan;Justin Har;Alessandro Sordoni;Philip Bachman;Adina Williams;Nikita Nangia;Zhilin Yang;Peng Qi;Saizheng Zhang;Y. Bengio;ing. In
  • 通讯作者:
    ing. In

Samuel Bowman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Samuel Bowman', 18)}}的其他基金

CRII: RI: Can Low-Bias Machine Learners Acquire English Grammar? Deep Learning and Linguistic Acceptability
CRII:RI:低偏差机器学习者能否获得英语语法?
  • 批准号:
    1850208
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
The 2018 NAACL Student Research Workshop
2018年NAACL学生研究研讨会
  • 批准号:
    1803423
  • 财政年份:
    2018
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant

相似海外基金

A study for cross borders Indonesian nurses and care workers: Case of Japan-Indonesia Economic Partnership Agreement
针对跨境印度尼西亚护士和护理人员的研究:日本-印度尼西亚经济伙伴关系协定的案例
  • 批准号:
    22KJ0334
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
NSF-NOAA Interagency Agreement (IAA) for the Global Oscillations Network Group (GONG)
NSF-NOAA 全球振荡网络组 (GONG) 机构间协议 (IAA)
  • 批准号:
    2410236
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Cooperative Agreement
Conditions for U.S. Agreement on the Closure of Contested Overseas Bases: Relations of Threat, Alliance and Base Alternatives
美国关于关闭有争议的海外基地协议的条件:威胁、联盟和基地替代方案的关系
  • 批准号:
    23K18762
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
MSI Smart Manufacturing Data Hub – Open Calls Grant Funding Agreement
MSI 智能制造数据中心 – 公开征集赠款资助协议
  • 批准号:
    900240
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Collaborative R&D
Challenges of the Paris Agreement Exposed by the Energy Shift by External Factors: The Case of Renewable Energy Policies in Japan, the U.S., and the EU
外部因素导致的能源转移对《巴黎协定》的挑战:以日本、美国和欧盟的可再生能源政策为例
  • 批准号:
    23H00770
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Continuation of Cooperative Agreement between U.S. Food and Drug Administration and S.C. Department of Health and Environmental Control (DHEC) for MFRPS Maintenance.
美国食品和药物管理局与南卡罗来纳州健康与环境控制部 (DHEC) 继续签订 MFRPS 维护合作协议。
  • 批准号:
    10829529
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
National Ecological Observatory Network Governing Cooperative Agreement
国家生态观测站网络治理合作协议
  • 批准号:
    2346114
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Cooperative Agreement
The Kansas Department of Agriculture's Flexible Funding Model Cooperative Agreement for MFRPS Maintenance, FPTF, and Special Project.
堪萨斯州农业部针对 MFRPS 维护、FPTF 和特别项目的灵活资助模式合作协议。
  • 批准号:
    10828588
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
Robust approaches for the analysis of agreement between clinical measurements: development of guidance and software tools for researchers
分析临床测量之间一致性的稳健方法:为研究人员开发指南和软件工具
  • 批准号:
    MR/X029301/1
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Research Grant
FER (H&L) AMR PACE (A-0438) grant funding agreement
费率(H
  • 批准号:
    107541
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了