CAREER: Microfluidic development of dual-gel culture matrices for studying effects of interstitial flow on cellular behaviors
职业:双凝胶培养基质的微流体开发,用于研究间质流对细胞行为的影响
基本信息
- 批准号:2047072
- 负责人:
- 金额:$ 54.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-technical summary: This project will develop and use biomaterials to investigate the effects of interstitial flow on cell behavior. The behavior of living cells in all organisms is influenced by a variety of factors in their surrounding tissue environment. Examples of these factors include the slow fluid flux outside cells, the confinement from neighbor cells or other components, and the rigidity of the tissue. This program will design and use new biomaterials to reveal the effects of environmental stimuli on important cell characteristics. To understand the mechanisms underlying cellular behavior, it is desired to employ an experimental model that provides a tissue-mimetic environment and allows for independent control of relevant contributing factors such as pore size. This remains a challenge for traditional biomaterial cell culture models which have been made of a single hydrogel, such as collagen. The proposed study will address this unmet challenge by developing a new and sophisticated two component “dual gel” biomaterial using powerful microfluidics research methods. A user-friendly computer program will also be developed and shared with the science community to facilitate applications of such dual-gel materials. The proposed biomaterials can be readily adapted to study various cell types and thus potentially benefit a broad range of fundamental biomedical research questions. Ultimately these new biomaterials could help researchers understand questions like how tissue grows and how cancer cells spread. Moreover, the educational program will provide research opportunities and mentoring to students from high school to graduate levels on both research and career development. The outreach activities include developing science workshops and holiday lecture series for families to bring science and biotechnology to the local community. Technical summary: This project will develop and use biomaterials to investigate the effects of interstitial flow on cell behavior. Interstitial flow, the slow flux of fluid occurring in the interstitial space of the extracellular matrix (ECM), is linked to ECM permeability and provides direct mechanical cues to the resident cells through shear and normal stress. Moreover, interstitial flow couples with biomolecular diffusion to induce chemotactic signals. This project seeks to investigate the mechanisms regulating cell migration under interstitial flow by designing biomaterials to manipulate interstitial fluid velocity and ECM permeability without affecting other contributing factors, such as stiffness and physical confinement. Achieving this independent control remains a daunting task in traditional hydrogel-based culture models due to the inevitable correlation among various properties of a hydrogel. The proposed research will overcome this challenge by developing tissue-mimetic, dual-gel 3D cell culture matrices that enable independent control of matrix properties, including stiffness, permeability, confining pore size, cell-binding motifs, and interstitial fluid flow. Moreover, the project will demonstrate the capability of the dual-gel matrix to co-culture multiple cells with regulated spatial distribution and cell number ratio. The proposed dual-gel culture models will be fabricated by a combination of two microfluidics approaches. The project will also develop a GUI computer program in MATLAB for numerical visualization of coupling between fluid flow and molecular diffusion in dual-porosity materials. The educational outreach targets on providing research opportunities and mentoring to students from high school to graduate levels in both research and career development. The outreach program will also develop science workshops and holiday lecture series for families to bring science of soft matter, transport phenomena, and biotechnology to the local community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:该项目将开发和使用生物材料来研究间质流对细胞行为的影响。所有生物体中活细胞的行为都受到周围组织环境中多种因素的影响。这些因素的例子包括细胞外部的缓慢流体流动、邻近细胞或其他成分的限制以及组织的刚性。该计划将设计和使用新的生物材料来揭示环境刺激对重要细胞特征的影响。为了了解细胞行为的机制,需要采用一种实验模型,该模型提供组织模拟环境并允许独立控制相关影响因素(例如孔径)。对于由单一水凝胶(例如胶原蛋白)制成的传统生物材料细胞培养模型来说,这仍然是一个挑战。拟议的研究将通过使用强大的微流体研究方法开发一种新型、复杂的双组分“双凝胶”生物材料来解决这一未解决的挑战。还将开发一个用户友好的计算机程序并与科学界共享,以促进这种双凝胶材料的应用。所提出的生物材料可以很容易地适应研究各种细胞类型,因此可能有益于广泛的基本生物医学研究问题。最终,这些新的生物材料可以帮助研究人员了解组织如何生长和癌细胞如何扩散等问题。此外,该教育计划将为从高中到研究生的学生提供研究机会和研究和职业发展方面的指导。外展活动包括为家庭举办科学讲习班和假日讲座系列,将科学和生物技术引入当地社区。 技术摘要:该项目将开发和使用生物材料来研究间质流对细胞行为的影响。间质流是细胞外基质 (ECM) 间隙中发生的液体缓慢流动,与 ECM 渗透性相关,并通过剪切和正应力向驻留细胞提供直接的机械信号。此外,间质流动与生物分子扩散耦合以诱导趋化信号。该项目旨在通过设计生物材料来操纵间质液速度和 ECM 渗透性而不影响其他影响因素(例如刚度和物理限制),从而研究间质流下调节细胞迁移的机制。由于水凝胶的各种特性之间不可避免的相关性,在传统的基于水凝胶的培养模型中实现这种独立控制仍然是一项艰巨的任务。拟议的研究将通过开发模拟组织的双凝胶 3D 细胞培养基质来克服这一挑战,该基质能够独立控制基质特性,包括硬度、渗透性、限制孔径、细胞结合基序和间质液流动。此外,该项目将展示双凝胶基质共培养多个细胞的能力,并调节空间分布和细胞数量比例。所提出的双凝胶培养模型将通过两种微流体方法的组合来制造。该项目还将在 MATLAB 中开发 GUI 计算机程序,用于双孔隙材料中流体流动和分子扩散之间耦合的数值可视化。教育推广的目标是为从高中到研究生的学生提供研究机会和指导,包括研究和职业发展。该外展计划还将为家庭举办科学研讨会和假日讲座系列,将软物质、运输现象和生物技术的科学带入当地社区。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jing Fan其他文献
Inverse estimation of near-field temperature and surface heat flux via single point temperature measurement
通过单点温度测量反演近场温度和表面热通量
- DOI:
10.1007/s00231-016-1831-4 - 发表时间:
2017 - 期刊:
- 影响因子:2.2
- 作者:
Chen-Wu Wu;Yong-Hua Shu;Ji-Jia Xie;Jian-Zheng Jiang;Jing Fan - 通讯作者:
Jing Fan
A deep-leaning reconstruction algorithm that improves the image quality of low-tube-voltage coronary CT angiography.
一种深度倾斜重建算法,可提高低管电压冠状动脉 CT 血管造影的图像质量。
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:3.3
- 作者:
Mengzhen Wang;Jing Fan;Xiaofeng Shi;L. Qin;Fuhua Yan;Wenjie Yang - 通讯作者:
Wenjie Yang
Bronsted Acid/Organic Photoredox Cooperative Catalysis: Easy
布朗斯台德酸/有机光氧化还原协同催化:简单
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:5.2
- 作者:
Peizhong Xie;Jing Fan;Yanan Liu;Xiangyang Wo;Weishan Fu;Teck-Peng Loh - 通讯作者:
Teck-Peng Loh
Metabolomic and Lipidomic Analysis of Bone Marrow Derived Macrophages.
骨髓源性巨噬细胞的代谢组学和脂质组学分析。
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0.8
- 作者:
Gretchen L. Seim;Steven V. John;Jing Fan - 通讯作者:
Jing Fan
18 – Esophageal Carcinoma
18 – 食道癌
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Q. Zhan;Luhua Wang;Yong;Yun;Jing Jiang;Jing Fan;Jing;Jie Shen - 通讯作者:
Jie Shen
Jing Fan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jing Fan', 18)}}的其他基金
ISS: A Microgravity Microfluidic Study of Packing and Particle Stabilization of Foams and Emulsions
ISS:泡沫和乳液的填充和颗粒稳定性的微重力微流体研究
- 批准号:
1929502 - 财政年份:2019
- 资助金额:
$ 54.66万 - 项目类别:
Standard Grant
相似国自然基金
基于RPA-microfluidic chip技术高效诊断侵袭性真菌病的研究
- 批准号:2020A151501763
- 批准年份:2020
- 资助金额:10.0 万元
- 项目类别:省市级项目
利用Microfluidic系统研究血流速度对巨核细胞生成血小板的信号调控机制
- 批准号:81770131
- 批准年份:2017
- 资助金额:58.0 万元
- 项目类别:面上项目
相似海外基金
High-throughput injectability screening of high concentration protein formulations by microfluidic quartz resonators
通过微流控石英谐振器对高浓度蛋白质制剂进行高通量可注射性筛选
- 批准号:
10760592 - 财政年份:2023
- 资助金额:
$ 54.66万 - 项目类别:
Developing an ultra-high throughput droplet microfluidic workflow for genetic circuit characterization
开发用于遗传电路表征的超高通量液滴微流体工作流程
- 批准号:
10680017 - 财政年份:2023
- 资助金额:
$ 54.66万 - 项目类别:
Development of tangible user interface using ultrasonic microfluidic manipulation platform
使用超声波微流体操纵平台开发有形用户界面
- 批准号:
23K16916 - 财政年份:2023
- 资助金额:
$ 54.66万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Simple and Accessible Microfluidic Platform for Single Molecule Sequence Profiling of Tumor-derived DNA within Liquid Biopsies
简单易用的微流体平台,用于液体活检中肿瘤来源 DNA 的单分子序列分析
- 批准号:
10699214 - 财政年份:2023
- 资助金额:
$ 54.66万 - 项目类别:
High efficiency microfluidic device for large scale engineered cell therapy manufacturing
用于大规模工程细胞治疗制造的高效微流体装置
- 批准号:
10693775 - 财政年份:2023
- 资助金额:
$ 54.66万 - 项目类别:
SBIR Phase II: A high throughput microfluidic platform to accelerate biomanufacturing transitions in biologics development
SBIR II 期:一个高通量微流控平台,可加速生物制剂开发中的生物制造转型
- 批准号:
2309447 - 财政年份:2023
- 资助金额:
$ 54.66万 - 项目类别:
Cooperative Agreement
Development of flat-shape contact-angle sensor to realize sophisticated microfluidic devices
开发平面接触角传感器以实现复杂的微流体装置
- 批准号:
23K03959 - 财政年份:2023
- 资助金额:
$ 54.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Microfluidic Systems to Enable Enzyme Engineering for Chemical Synthesis
微流体系统使酶工程能够用于化学合成
- 批准号:
10715356 - 财政年份:2023
- 资助金额:
$ 54.66万 - 项目类别:
SBIR Phase I: Advanced microfluidic systems enabling development of novel circulating tumor cell diagnostics
SBIR 第一阶段:先进的微流体系统能够开发新型循环肿瘤细胞诊断
- 批准号:
2234009 - 财政年份:2023
- 资助金额:
$ 54.66万 - 项目类别:
Standard Grant
3D Printed Microfluidic Artificial Lung for Veteran Rehabilitation
用于退伍军人康复的 3D 打印微流控人工肺
- 批准号:
10629531 - 财政年份:2023
- 资助金额:
$ 54.66万 - 项目类别: