CAREER: Topological dynamics of three-dimensional active fluids
职业:三维活性流体的拓扑动力学
基本信息
- 批准号:2047119
- 负责人:
- 金额:$ 67.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-Technical AbstractSpontaneous collective motion can be witnessed at different scales in nature: flocks of birds, migrating ants, and even cells within our own body moving collectively to close a wound. The goal of this research project is to better understand how these collective motions appear by employing simple three-dimensional biomimetic materials. These active materials are composed of proteins that can self-propel by harvesting energy from their environment. Two types of 3D liquid crystals will be investigated where the propulsion is driven by either molecular motors or by biofilaments that grow from one end and shrink from the other, recapitulating two fundamental mechanisms employed by living cells to migrate. This research project will address how to relate the forces generated at the microscopic scale to the emergent collective properties in 3D, a critical step towards the predictive design of novel active materials for robotic or bioengineering applications. On the educational side, this project will improve diversity and retainment of underrepresented minorities at each academic level, from Kindergarten through postsecondary education. The principal investigator will leverage the tangible nature of active matter to i) create a bilingual science children’s book, ii) monthly Science/Pizza talks and iii) interactive demonstrations in local schools, and iv) an annual active matter bootcamp for REU students.Technical abstractSimple biomimetic materials composed of biopolymers have become a paradigm for studying active fluids that spontaneously flow. At the macroscale, these flows often drive the nucleation of motile singularities such as topological defects. Investigating such topological dynamics in 3D presents novel conceptual and experimental challenges. In addition, connecting these system-sized topological features to the microscopic driving forces is required to rigorously test hydrodynamic theories of active fluids. This CAREER award aims to elucidate how the magnitude and the symmetry of mesoscopic active stresses drive the emergent topological dynamics of 3D active fluids with orientational order, with a particular focus on 3D active nematics and 3D polar fluids. Together, these two complementary research projects provide a comprehensive description of the out-of-equilibrium hydrodynamics of motile topological defects in 3D. They will set the foundations for building advanced biomimetic materials endowed with life-like properties.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在自然界中,人们可以在不同的尺度上看到自发的集体运动:成群的鸟、迁徙的蚂蚁,甚至是我们身体内的细胞集体运动以闭合伤口。这个研究项目的目标是通过使用简单的三维仿生材料来更好地理解这些集体运动是如何出现的。这些活性物质由蛋白质组成,可以通过从环境中获取能量来自我推进。将研究两种类型的3D液晶,其中推进由分子马达或从一端生长并从另一端收缩的生物丝驱动,概括了活细胞迁移所采用的两种基本机制。 该研究项目将解决如何将微观尺度上产生的力与3D中出现的集体性质联系起来,这是机器人或生物工程应用新型活性材料预测设计的关键一步。在教育方面,该项目将改善从幼儿园到中学后教育的各个学术级别的多样性和保留代表性不足的少数群体。主要研究者将利用活性物质的有形性质i)创建双语科学儿童读物,ii)每月科学/比萨会谈和iii)在当地学校的互动演示,和iv)为REU学生的年度活性物质训练营。技术摘要简单的仿生材料组成的生物聚合物已经成为研究自发流动的活性流体的范例。在宏观尺度上,这些流动经常驱动运动奇点的成核,如拓扑缺陷。在3D中研究这种拓扑动力学提出了新的概念和实验挑战。此外,连接这些系统规模的拓扑特征的微观驱动力,需要严格测试流体动力学理论的活性流体。该职业奖旨在阐明介观主动应力的大小和对称性如何驱动具有取向顺序的3D主动流体的新兴拓扑动力学,特别关注3D主动向列相和3D极性流体。总之,这两个互补的研究项目提供了一个全面的描述运动的拓扑缺陷在3D的平衡流体动力学。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guillaume Duclos其他文献
Finite-rate sparse quantum codes aplenty
大量的有限速率稀疏量子代码
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:6.4
- 作者:
Maxime Tremblay;Guillaume Duclos;S. Kourtis - 通讯作者:
S. Kourtis
Distillation of Non-Stabilizer States for Universal Quantum Computation
用于通用量子计算的非稳定态蒸馏
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Guillaume Duclos;K. Svore - 通讯作者:
K. Svore
Confinement controlled bend instability of three-dimensional active fluids.
约束控制三维活性流体的弯曲不稳定性。
- DOI:
10.1103/physrevlett.127.197801 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
P. Chandrakar;M. Varghese;S. Aghvami;A. Baskaran;Z. Dogic;Guillaume Duclos - 通讯作者:
Guillaume Duclos
A renormalization group decoding algorithm for topological quantum codes
拓扑量子码的重整化群译码算法
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Guillaume Duclos;D. Poulin - 通讯作者:
D. Poulin
Guillaume Duclos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: New Frontiers in the Dynamics of Topological Solitons
职业:拓扑孤子动力学的新领域
- 批准号:
2235233 - 财政年份:2023
- 资助金额:
$ 67.53万 - 项目类别:
Continuing Grant
CAREER: Uncountable topological dynamics
职业:不可数的拓扑动力学
- 批准号:
2144118 - 财政年份:2022
- 资助金额:
$ 67.53万 - 项目类别:
Continuing Grant
CAREER: Correlations, responses and dynamics of interacting topological matter
职业:相互作用的拓扑物质的相关性、响应和动态
- 批准号:
2141966 - 财政年份:2022
- 资助金额:
$ 67.53万 - 项目类别:
Continuing Grant
CAREER: Geometries of Topological Defects in 3D Nematics, from Equilibrium Structure to Active Dynamics
职业:3D 向列学中拓扑缺陷的几何形状,从平衡结构到主动动力学
- 批准号:
2225543 - 财政年份:2022
- 资助金额:
$ 67.53万 - 项目类别:
Continuing Grant
CAREER: Geometries of Topological Defects in 3D Nematics, from Equilibrium Structure to Active Dynamics
职业:3D 向列学中拓扑缺陷的几何形状,从平衡结构到主动动力学
- 批准号:
2046063 - 财政年份:2021
- 资助金额:
$ 67.53万 - 项目类别:
Continuing Grant
CAREER: Non-equilibrium Many-Body Dynamics in Topological Quantum Materials
职业:拓扑量子材料中的非平衡多体动力学
- 批准号:
1847078 - 财政年份:2019
- 资助金额:
$ 67.53万 - 项目类别:
Continuing Grant
CAREER: Quantum anomalies and collective dynamics in symmetry-protected topological phases
职业:对称保护拓扑相中的量子异常和集体动力学
- 批准号:
1949785 - 财政年份:2017
- 资助金额:
$ 67.53万 - 项目类别:
Continuing Grant
CAREER: Quantum anomalies and collective dynamics in symmetry-protected topological phases
职业:对称保护拓扑相中的量子异常和集体动力学
- 批准号:
1455296 - 财政年份:2015
- 资助金额:
$ 67.53万 - 项目类别:
Continuing Grant
CAREER: Dynamics, Correlations and Disorder in Topological Matter
职业:拓扑物质中的动力学、相关性和无序性
- 批准号:
1350663 - 财政年份:2014
- 资助金额:
$ 67.53万 - 项目类别:
Continuing Grant
CAREER: Topological Vortex Dynamics
职业:拓扑涡动力学
- 批准号:
1351506 - 财政年份:2014
- 资助金额:
$ 67.53万 - 项目类别:
Continuing Grant