CAREER: Autonomous Live Sketching of Dynamic Environments by Exploiting Spatiotemporal Variations

职业:利用时空变化自主实时绘制动态环境草图

基本信息

  • 批准号:
    2047169
  • 负责人:
  • 金额:
    $ 54.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-03-15 至 2026-02-28
  • 项目状态:
    未结题

项目摘要

There are many emergency scenarios that require humans to understand the environments instantly. For example, after disasters of chemical or nuclear leakage, the spread and intensity of the contaminant need to be characterized immediately for the best first response. Inspired by artistic live sketching which needs to rapidly capture transient scenes and unveil their most salient spatiotemporal characteristics, the autonomous mobile robots equipped with advanced artificial intelligence (AI) algorithms will be utilized to "live sketch" highly dynamic environments through autonomous contaminant sampling and real-time environmental modeling. Success of this research could potentially be a game-changer for automated environmental monitoring under extreme conditions. The results can be naturally extended to many applications including those non-disastrous but time-critical scenarios such as smog pollution and algal bloom monitoring. The education objective is to promote general interest in robotics careers by integrating this research into curriculum development, direct student involvement in research (particularly for female and minority students), as well as community outreach.The research objective of this project is to investigate principled, expeditious, and precise environmental modeling techniques through adaptive environmental sampling with robotic vehicles. This research program tackles a variety of needed techniques drawn from important AI-robotics subfields including data-driven modeling, sampling trajectory planning, decision making under uncertainty, as well as multi-robot coordination. An important goal is to obtain deeper insights into all these subfields and their connections, leading to a design of a principled and comprehensive framework for building a complete integrated system. New solutions of a set of inter-dependent modeling and optimization methods will be developed, so that the latent environment model and its spatiotemporal variations (e.g., contamination distribution and diffusion processes) can be learned with high accuracy, even through using a small number of samples constrained by a very short data-collection time window. The proposed efforts include development of theoretical results and algorithms, but also emphasize their applications in various challenging and unstructured environments.This project is supported by the cross-directorate Foundational Research in Robotics program, jointly managed and funded by the Directorates for Engineering (ENG) and Computer and Information Science and Engineering (CISE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
有许多紧急情况需要人类立即了解环境。例如,在化学或核泄漏的灾难发生后,需要立即将污染物的扩散和强度表征为最佳的第一反应。受艺术现场素描的启发,需要快速捕获短暂的场景并揭示其最突出的时空特征,配备了高级人工智能(AI)算法的自主移动机器人将通过自动污染物采样和实时环境建模来“实时人工智能(AI)算法。这项研究的成功可能是在极端条件下自动化环境监测的游戏改变者。结果自然可以扩展到许多应用程序,包括那些非疾病但时间关键时期的情况,例如烟雾污染和藻类绽放监测。教育目标是通过将这项研究纳入课程开发,直接参与研究(尤其是女性和少数族裔学生)以及社区外展的方式来促进对机器人职业的普遍兴趣。该项目的研究目标是通过适应性的环境采样来调查原理,快速和精确的环境建模技术。该研究计划涉及从重要的AI-机器人子领域提取的各种需要的技术,包括数据驱动的建模,采样轨迹计划,不确定性下的决策以及多机器人协调。一个重要的目标是获得对所有这些子领域及其联系的更深入的见解,从而设计出一个有原则且全面的框架来构建完整的集成系统。将开发一组相互依赖的建模和优化方法的新解决方案,以便可以高精度地学习潜在环境模型及其时空变化(例如,污染分布和扩散过程),即使使用少数样品受到非常短的数据收集时间窗口的约束。拟议的努力包括发展理论结果和算法,同时也强调了它们在各种具有挑战性和非结构化环境中的应用。该项目得到了机器人计划中的跨领域基础研究的支持,共同管理和资助了由工程局(ENG)和计算机和信息科学和工程(CISE)的宣布(CISE)。基金会的智力优点和更广泛的影响评论标准。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Decision-Making Among Bounded Rational Agents
有限理性主体之间的决策
AK: Attentive Kernel for Information Gathering
  • DOI:
    10.48550/arxiv.2205.06426
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Weizhe (Wesley) Chen;R. Khardon;Lantao Liu
  • 通讯作者:
    Weizhe (Wesley) Chen;R. Khardon;Lantao Liu
Autonomous Navigation of AGVs in Unknown Cluttered Environments: log-MPPI Control Strategy
未知杂乱环境中 AGV 的自主导航:log-MPPI 控制策略
Model-Agnostic Multi-Agent Perception Framework
Informative Planning in the Presence of Outliers
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lantao Liu其他文献

Synthesis of dendrimer-supported ferrocenylmethyl aziridino alcohol ligands and their application in asymmetric catalysis
树枝状聚合物负载二茂铁基甲基氮丙啶醇配体的合成及其在不对称催化中的应用
  • DOI:
    10.1039/c4gc02447h
  • 发表时间:
    2015-05
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Dongli Chen;Anan Zhang;Mincan Wang;Lantao Liu
  • 通讯作者:
    Lantao Liu
Communication constrained task allocation with optimized local task swaps
通过优化的本地任务交换进行通信受限的任务分配
  • DOI:
    10.1007/s10514-015-9481-9
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Lantao Liu;Nathan Michael;Dylan A. Shell
  • 通讯作者:
    Dylan A. Shell
Coordination of Bounded Rational Drones Through Informed Prior Policy
通过知情的先验政策协调有界理性无人机
Palladium-catalyzed disilylation of 2-bromoarylferrocenes: An efficient approach to 1-Trimethylsilyl-2-(2-trimethylsilylaryl)ferrocenes
  • DOI:
    10.1016/j.tetlet.2022.153821
  • 发表时间:
    2022-05-25
  • 期刊:
  • 影响因子:
  • 作者:
    Lulin Qiao;An-An Zhang;Jingchao Chen;Gao-Wei Li;Yuan-Yuan Gao;Baomin Fan;Lantao Liu
  • 通讯作者:
    Lantao Liu
A palladium-catalyzed sequential Heck coupling/C–C bond activation approach to oxindoles with all-carbon-quaternary centers
钯催化连续 Heck 偶联/C-C 键活化方法制备具有全碳四元中心的羟吲哚
  • DOI:
    10.1039/d1ob02440j
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Guoliang Mao;Chenxiang Meng;Fangyuan Cheng;Wenbo Wu;Yuan-Yuan Gao;Gao-Wei Li;Lantao Liu
  • 通讯作者:
    Lantao Liu

Lantao Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lantao Liu', 18)}}的其他基金

RI: Small: Exploiting Symmetries of Decision-Theoretic Planning for Autonomous Vehicles
RI:小:利用自动驾驶车辆决策理论规划的对称性
  • 批准号:
    2006886
  • 财政年份:
    2020
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Standard Grant

相似国自然基金

无人船自主航行系统软硬件耦合失效机理及可靠性测试模型研究
  • 批准号:
    52301401
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
应用分子影像方法探究帕金森病模型鼠心脏自主神经损伤的时间窗及心脏神经受体表达的分析
  • 批准号:
    82360352
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
面向多机器人视觉感知的自主学习机制
  • 批准号:
    62373009
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
烟雾环境下基于全向扫描毫米波雷达的无人车辆自主导航算法研究
  • 批准号:
    52372415
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
密闭空间中自主无人运动体事件触发控制方法研究
  • 批准号:
    62303352
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Non-cell autonomous consequences of cytoplasmic DNA
细胞质 DNA 的非细胞自主后果
  • 批准号:
    10748962
  • 财政年份:
    2023
  • 资助金额:
    $ 54.99万
  • 项目类别:
A MICROFLUIDIC AND MACHINE LEARNING-ENABLED SMARTLAB FOR AUTONOMOUS REMOTE EXECUTION AND ITERATION OF MULTISCALE LIVE CELL ASSAYS FOR DRUG DISCOVERY
支持微流控和机器学习的智能实验室,用于自主远程执行和迭代多尺度活细胞测定以进行药物发现
  • 批准号:
    10505107
  • 财政年份:
    2021
  • 资助金额:
    $ 54.99万
  • 项目类别:
Research on support to live well with dementia and mild cogntive impairment
支持痴呆症和轻度认知障碍患者良好生活的研究
  • 批准号:
    19K11432
  • 财政年份:
    2019
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Practical Research for Establishment of Management Model and Higher Level Residential Environment regarding Shelter
住房管理模式建立和更高层次人居环境的实践研究
  • 批准号:
    18K04494
  • 财政年份:
    2018
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
MONAXLE - Live monitoring of train axles with autonomous wireless systems
MONAXLE - 使用自主无线系统实时监控列车车轴
  • 批准号:
    104243
  • 财政年份:
    2018
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了