CAREER: Autonomous Live Sketching of Dynamic Environments by Exploiting Spatiotemporal Variations
职业:利用时空变化自主实时绘制动态环境草图
基本信息
- 批准号:2047169
- 负责人:
- 金额:$ 54.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-15 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
There are many emergency scenarios that require humans to understand the environments instantly. For example, after disasters of chemical or nuclear leakage, the spread and intensity of the contaminant need to be characterized immediately for the best first response. Inspired by artistic live sketching which needs to rapidly capture transient scenes and unveil their most salient spatiotemporal characteristics, the autonomous mobile robots equipped with advanced artificial intelligence (AI) algorithms will be utilized to "live sketch" highly dynamic environments through autonomous contaminant sampling and real-time environmental modeling. Success of this research could potentially be a game-changer for automated environmental monitoring under extreme conditions. The results can be naturally extended to many applications including those non-disastrous but time-critical scenarios such as smog pollution and algal bloom monitoring. The education objective is to promote general interest in robotics careers by integrating this research into curriculum development, direct student involvement in research (particularly for female and minority students), as well as community outreach.The research objective of this project is to investigate principled, expeditious, and precise environmental modeling techniques through adaptive environmental sampling with robotic vehicles. This research program tackles a variety of needed techniques drawn from important AI-robotics subfields including data-driven modeling, sampling trajectory planning, decision making under uncertainty, as well as multi-robot coordination. An important goal is to obtain deeper insights into all these subfields and their connections, leading to a design of a principled and comprehensive framework for building a complete integrated system. New solutions of a set of inter-dependent modeling and optimization methods will be developed, so that the latent environment model and its spatiotemporal variations (e.g., contamination distribution and diffusion processes) can be learned with high accuracy, even through using a small number of samples constrained by a very short data-collection time window. The proposed efforts include development of theoretical results and algorithms, but also emphasize their applications in various challenging and unstructured environments.This project is supported by the cross-directorate Foundational Research in Robotics program, jointly managed and funded by the Directorates for Engineering (ENG) and Computer and Information Science and Engineering (CISE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
有许多紧急情况需要人类立即了解环境。例如,在发生化学或核泄漏灾难后,需要立即确定污染物的扩散和强度,以便作出最佳的第一反应。受艺术现场素描需要快速捕捉瞬态场景并揭示其最突出的时空特征的启发,配备先进人工智能(AI)算法的自主移动机器人将通过自主污染物采样和实时环境建模来“现场素描”高动态环境。这项研究的成功可能会改变极端条件下自动环境监测的游戏规则。结果可以自然地扩展到许多应用,包括那些非灾难性但时间关键的场景,如雾霾污染和藻华监测。教育目标是通过将这项研究纳入课程开发,学生直接参与研究(特别是女性和少数民族学生)以及社区外展,促进对机器人职业的普遍兴趣。该项目的研究目标是通过机器人车辆的自适应环境采样来研究有原则的、快速的和精确的环境建模技术。该研究项目涉及从重要的人工智能机器人子领域中提取的各种必要技术,包括数据驱动建模、采样轨迹规划、不确定性下的决策制定以及多机器人协调。一个重要的目标是更深入地了解所有这些子领域及其联系,从而设计出一个原则性的、全面的框架,以构建一个完整的集成系统。将开发一套相互依赖的建模和优化方法的新解决方案,以便即使通过使用受非常短的数据收集时间窗口限制的少量样本,也可以高精度地学习潜在环境模型及其时空变化(例如,污染分布和扩散过程)。提出的努力包括理论结果和算法的发展,但也强调它们在各种具有挑战性和非结构化环境中的应用。该项目由跨部门机器人基础研究项目支持,由工程(ENG)和计算机与信息科学与工程(CISE)联合管理和资助。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Decision-Making Among Bounded Rational Agents
有限理性主体之间的决策
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Xu, Junhong;Pushp, Durgakant;Yin, Kai;Liu, Lantao
- 通讯作者:Liu, Lantao
AK: Attentive Kernel for Information Gathering
- DOI:10.48550/arxiv.2205.06426
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Weizhe (Wesley) Chen;R. Khardon;Lantao Liu
- 通讯作者:Weizhe (Wesley) Chen;R. Khardon;Lantao Liu
Autonomous Navigation of AGVs in Unknown Cluttered Environments: log-MPPI Control Strategy
未知杂乱环境中 AGV 的自主导航:log-MPPI 控制策略
- DOI:10.1109/lra.2022.3192772
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Mohamed, Ihab;Yin, Kai;Liu, Lantao
- 通讯作者:Liu, Lantao
Informative Planning in the Presence of Outliers
- DOI:10.1109/icra46639.2022.9812267
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:Weizhe (Wesley) Chen;Lantao Liu
- 通讯作者:Weizhe (Wesley) Chen;Lantao Liu
Model-Agnostic Multi-Agent Perception Framework
- DOI:10.1109/icra48891.2023.10161460
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:Weizhe (Wesley) Chen;Runsheng Xu;Hao Xiang;Lantao Liu;Jiaqi Ma
- 通讯作者:Weizhe (Wesley) Chen;Runsheng Xu;Hao Xiang;Lantao Liu;Jiaqi Ma
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lantao Liu其他文献
A palladium-catalyzed sequential Heck coupling/C–C bond activation approach to oxindoles with all-carbon-quaternary centers
钯催化连续 Heck 偶联/C-C 键活化方法制备具有全碳四元中心的羟吲哚
- DOI:
10.1039/d1ob02440j - 发表时间:
2022 - 期刊:
- 影响因子:3.2
- 作者:
Guoliang Mao;Chenxiang Meng;Fangyuan Cheng;Wenbo Wu;Yuan-Yuan Gao;Gao-Wei Li;Lantao Liu - 通讯作者:
Lantao Liu
Enzyme structure dynamics of xylanase I from Trichoderma longibrachiatum
长枝木霉木聚糖酶 I 的酶结构动力学
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:3
- 作者:
U. Uzuner;Weibing Shi;Lantao Liu;Sanmin Liu;Susie Y. Dai;Joshua S. Yuan - 通讯作者:
Joshua S. Yuan
A Visual Feature based Obstacle Avoidance Method for Autonomous Navigation
一种基于视觉特征的自主导航避障方法
- DOI:
10.1109/aipr47015.2019.9174584 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Zheng Chen;Malintha Fernando;Lantao Liu - 通讯作者:
Lantao Liu
Multi-Robot Formation Morphing through a Graph Matching Problem
通过图形匹配问题进行多机器人编队变形
- DOI:
10.1007/978-3-642-55146-8_21 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Lantao Liu;Dylan A. Shell - 通讯作者:
Dylan A. Shell
NSS-VAEs: Generative Scene Decomposition for Visual Navigable Space Construction
NSS-VAE:用于视觉导航空间构建的生成场景分解
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Zheng Chen;Lantao Liu - 通讯作者:
Lantao Liu
Lantao Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lantao Liu', 18)}}的其他基金
RI: Small: Exploiting Symmetries of Decision-Theoretic Planning for Autonomous Vehicles
RI:小:利用自动驾驶车辆决策理论规划的对称性
- 批准号:
2006886 - 财政年份:2020
- 资助金额:
$ 54.99万 - 项目类别:
Standard Grant
相似海外基金
I-Corps: Networked Autonomous-humanoid Security Robot
I-Corps:网络化自主人形安全机器人
- 批准号:
2348931 - 财政年份:2024
- 资助金额:
$ 54.99万 - 项目类别:
Standard Grant
CPS: Small: NSF-DST: Autonomous Operations of Multi-UAV Uncrewed Aerial Systems using Onboard Sensing to Monitor and Track Natural Disaster Events
CPS:小型:NSF-DST:使用机载传感监测和跟踪自然灾害事件的多无人机无人航空系统自主操作
- 批准号:
2343062 - 财政年份:2024
- 资助金额:
$ 54.99万 - 项目类别:
Standard Grant
Advanced AI and RobotIcS for autonomous task pErformance
先进的人工智能和机器人控制系统可实现自主任务执行
- 批准号:
10110390 - 财政年份:2024
- 资助金额:
$ 54.99万 - 项目类别:
EU-Funded
SBIR Phase I: Optimizing Safety and Fuel Efficiency in Autonomous Rendezvous and Proximity Operations (RPO) of Uncooperative Objects
SBIR 第一阶段:优化不合作物体自主交会和邻近操作 (RPO) 的安全性和燃油效率
- 批准号:
2311379 - 财政年份:2024
- 资助金额:
$ 54.99万 - 项目类别:
Standard Grant
Trusted Interaction for Autonomous Vehicles in a Smart City
智能城市中自动驾驶汽车的可信交互
- 批准号:
24K15045 - 财政年份:2024
- 资助金额:
$ 54.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Probabilistic Inference Based Utility Evaluation and Path Generation for Active Autonomous Exploration of USVs in Unknown Confined Marine Environments
基于概率推理的效用评估和路径生成,用于未知受限海洋环境中 USV 主动自主探索
- 批准号:
EP/Y000862/1 - 财政年份:2024
- 资助金额:
$ 54.99万 - 项目类别:
Research Grant
I-Corps: Autonomous Aquabots for Water Main Inspections
I-Corps:用于水管检查的自主 Aquabot
- 批准号:
2345478 - 财政年份:2024
- 资助金额:
$ 54.99万 - 项目类别:
Standard Grant
CAREER: Designing Autonomous Battery-Free Robotic Sensors
职业:设计自主无电池机器人传感器
- 批准号:
2338736 - 财政年份:2024
- 资助金额:
$ 54.99万 - 项目类别:
Continuing Grant
I-Corps: Translation potential of a semi-autonomous feedback device to enable manual ventilation
I-Corps:半自主反馈设备的翻译潜力,以实现手动通气
- 批准号:
2420392 - 财政年份:2024
- 资助金额:
$ 54.99万 - 项目类别:
Standard Grant
Hybrid optimisation for coordinating autonomous trucks and drones
用于协调自动卡车和无人机的混合优化
- 批准号:
DE240100042 - 财政年份:2024
- 资助金额:
$ 54.99万 - 项目类别:
Discovery Early Career Researcher Award