CAREER: Time-Aware Multi-Objective Recommendation in Online Learning Environments

职业:在线学习环境中的时间感知多目标推荐

基本信息

  • 批准号:
    2047500
  • 负责人:
  • 金额:
    $ 54.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Online education is playing an increasingly essential role in workforce training, skill development, and life-long learning. Given the scale of online learning systems and their dependence on student self-regulation, automatic recommendation and instructional tools are crucial for students' success in online education. Ideally, these tools should provide personalized guidance to students to work with the most effective type of learning material (e.g., a problem to solve or a video lecture to watch), at the right time, to efficiently accomplish their personal study goals (e.g., to fulfill their interests or to learn a topic in the shortest time). Current solutions, however, focus on instructing one type of learning activity, ignoring the importance of studying time intervals, and only satisfying one goal for all students. This project will research a new generation of educational recommender systems towards achieving students’ long-term goals by automatically detecting and balancing between their different, potentially conflicting study goals. This project will develop computational models and algorithms that can suggest various types of personalized learning activities and optimally selected study times for students. The resulting solutions will be applicable to machine learning and data mining fields, especially, to long-term utility and time-sensitive recommender systems in domains such as health and fitness. The products of this research will improve the accessibility of online education to better serve underrepresented learners. The findings can be used in the Education domain to improve students' learning. This project includes an integrated teaching plan that facilitates training the next generation of interdisciplinary undergraduate and graduate students in the convergence of Computer Science and Education fields. This project aims to research time-aware, multi-objective, multi-type, personalized educational recommender models and algorithms. The recommender systems designed in this project will be optimizing for students’ long-term learning interests, behavioral preferences, and learning goals. They will be capable of recommending both assessed and non-assessed types of learning materials to students and modeling the best study time intervals for them. The contributions of this project are realized via three research thrusts. In the first thrust, personalized knowledge tracing models, student choice models, and behavioral preference models are designed and integrated to model long-term rewards that facilitate multi-objective recommendations. In the second thrust, the project will investigate multi-type knowledge models and algorithms to suggest both assessed (e.g., problems) and non-assessed (e.g., video lectures) learning materials to students while considering their multiple objectives. The third thrust focuses on a new modality of educational recommender systems by incorporating point process modeling to detect the continuous-time influence between different activities and find the optimal personalized return-to-study time. These research thrusts build upon educational data mining, recommender systems, temporal process modeling, and reinforcement learning literature and extend each of them while contributing actionable insights in student learning processes. To assess the results of this project, a comprehensive evaluation plan is incorporated that includes simulations, offline evaluation on real-world datasets, online integration with live systems, and user studies. The results of this project will be disseminated to the broader Machine Learning, Artificial Intelligence, and Educational Data Mining communities via open-source software and publications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在线教育在劳动力培训、技能发展和终身学习方面发挥着越来越重要的作用。鉴于在线学习系统的规模及其对学生自我调节的依赖,自动推荐和教学工具对于学生在在线教育中的成功至关重要。理想情况下,这些工具应该为学生提供个性化的指导,让他们在正确的时间使用最有效的学习材料(例如,要解决的问题或观看的视频讲座),以有效地实现他们的个人学习目标(例如,满足他们的兴趣或在最短的时间内学习一个主题)。然而,目前的解决方案侧重于指导一种类型的学习活动,而忽视了学习时间间隔的重要性,并且只满足所有学生的一个目标。该项目将研究新一代教育推荐系统,通过自动检测和平衡学生不同的、潜在冲突的学习目标来实现学生的长期目标。这个项目将开发计算模型和算法,可以为学生建议各种类型的个性化学习活动和最佳选择的学习时间。所得到的解决方案将适用于机器学习和数据挖掘领域,特别是健康和健身等领域中的长期效用和时间敏感的推荐系统。这项研究的产品将提高在线教育的可及性,以更好地服务于代表性不足的学习者。研究结果可用于教育领域,以改善学生的学习。该项目包括一个综合教学计划,以促进在计算机科学和教育领域的融合中培养下一代跨学科的本科生和研究生。本项目旨在研究时效性、多目标、多类型、个性化的教育推荐模型和算法。本项目中设计的推荐系统将针对学生的长期学习兴趣、行为偏好和学习目标进行优化。他们将能够向学生推荐评估和非评估类型的学习材料,并对他们的最佳学习时间间隔进行建模。这一项目的贡献是通过三个研究推动力实现的。在第一个推力中,设计并集成了个性化知识跟踪模型、学生选择模型和行为偏好模型,以建立促进多目标推荐的长期奖励模型。在第二个重点中,该项目将调查多种类型的知识模型和算法,以向学生建议评估(例如问题)和非评估(例如视频讲座)的学习材料,同时考虑他们的多个目标。第三个重点是通过结合点过程建模来检测不同活动之间的持续时间影响,并找到最优的个性化返校时间,来构建一种新的教育推荐系统模式。这些研究工作建立在教育数据挖掘、推荐系统、时间过程建模和强化学习文献的基础上,并对它们进行了扩展,同时为学生的学习过程提供了可操作的见解。为了评估该项目的结果,纳入了一个全面的评估计划,其中包括模拟、对真实世界数据集的离线评估、与实时系统的在线集成以及用户研究。该项目的结果将通过开源软件和出版物传播到更广泛的机器学习、人工智能和教育数据挖掘社区。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MORS 2022: The Second Workshop on Multi-Objective Recommender Systems
MORS 2022:第二届多目标推荐系统研讨会
Proximity-Based Educational Recommendations: A Multi-Objective Framework
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chunpai Wang;Shaghayegh Sherry Sahebi;Peter Brusilovsky
  • 通讯作者:
    Chunpai Wang;Shaghayegh Sherry Sahebi;Peter Brusilovsky
STRETCH: Stress and Behavior Modeling with Tensor Decomposition of Heterogeneous Data
Transition-Aware Multi-Activity Knowledge Tracing
Graph-enhanced multi-activity knowledge tracing
图增强的多活动知识追踪
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sherry Sahebi其他文献

Towards Multi-Objective Behavior and Knowledge Modeling in Students
学生的多目标行为和知识建模

Sherry Sahebi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sherry Sahebi', 18)}}的其他基金

CRII: III: Modeling Student Knowledge and Improving Performance when Learning from Multiple Types of Materials
CRII:III:从多种类型的材料中学习时对学生知识进行建模并提高表现
  • 批准号:
    1755910
  • 财政年份:
    2018
  • 资助金额:
    $ 54.77万
  • 项目类别:
    Standard Grant

相似国自然基金

SERS探针诱导TAM重编程调控头颈鳞癌TIME的研究
  • 批准号:
    82360504
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
华蟾素调节PCSK9介导的胆固醇代谢重塑TIME增效aPD-L1治疗肝癌的作用机制研究
  • 批准号:
    82305023
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于MRI的机器学习模型预测直肠癌TIME中胶原蛋白水平及其对免疫T细胞调控作用的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
结直肠癌TIME多模态分子影像分析结合深度学习实现疗效评估和预后预测
  • 批准号:
    62171167
  • 批准年份:
    2021
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
Time-lapse培养对人类胚胎植入前印记基因DNA甲基化的影响研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
萱草花开放时间(Flower Opening Time)的生物钟调控机制研究
  • 批准号:
    31971706
  • 批准年份:
    2019
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
Time-of-Flight深度相机多径干扰问题的研究
  • 批准号:
    61901435
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
Finite-time Lyapunov 函数和耦合系统的稳定性分析
  • 批准号:
    11701533
  • 批准年份:
    2017
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
建筑工程计划中Time Buffer 的形成和分配 – 工程项目管理中的社会性研究
  • 批准号:
    71671098
  • 批准年份:
    2016
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
光学Parity-Time对称系统中破坏点的全光调控特性研究
  • 批准号:
    11504059
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CC* Integration-Small: Network-Aware Edge Computing for Real-time Wildfire Detection
CC* Integration-Small:用于实时野火检测的网络感知边缘计算
  • 批准号:
    2346755
  • 财政年份:
    2024
  • 资助金额:
    $ 54.77万
  • 项目类别:
    Standard Grant
CC* Integration-Small: Network cyberinfrastructure innovation with an intelligent real-time traffic analysis framework and application-aware networking
CC* Integration-Small:网络基础设施创新,具有智能实时流量分析框架和应用感知网络
  • 批准号:
    2322369
  • 财政年份:
    2023
  • 资助金额:
    $ 54.77万
  • 项目类别:
    Standard Grant
Collaborative Research: DESC: Type 2: Delphi: Life-time aware design frameworks for sustainable edge devices
合作研究:DESC:类型 2:Delphi:可持续边缘设备的生命周期感知设计框架
  • 批准号:
    2324861
  • 财政年份:
    2023
  • 资助金额:
    $ 54.77万
  • 项目类别:
    Standard Grant
Collaborative Research: DESC: Type 2: Delphi: Life-time aware design frameworks for sustainable edge devices
合作研究:DESC:类型 2:Delphi:可持续边缘设备的生命周期感知设计框架
  • 批准号:
    2324862
  • 财政年份:
    2023
  • 资助金额:
    $ 54.77万
  • 项目类别:
    Standard Grant
Collaborative Research: DESC: Type 2: Delphi: Life-time aware design frameworks for sustainable edge devices
合作研究:DESC:类型 2:Delphi:可持续边缘设备的生命周期感知设计框架
  • 批准号:
    2324860
  • 财政年份:
    2023
  • 资助金额:
    $ 54.77万
  • 项目类别:
    Standard Grant
CAREER: Toward Real-Time, Constraint-Aware Control of Complex Dynamical Systems: from Theory and Algorithms to Software Tools
职业:实现复杂动力系统的实时、约束感知控制:从理论和算法到软件工具
  • 批准号:
    2238424
  • 财政年份:
    2023
  • 资助金额:
    $ 54.77万
  • 项目类别:
    Standard Grant
Time-aware Community-enhanced Social Information Retrieval
时间感知社区增强社交信息检索
  • 批准号:
    RGPIN-2021-03170
  • 财政年份:
    2022
  • 资助金额:
    $ 54.77万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Power Systems Dynamics from Real-Time Data: Modeling, Inference, and Stability-Aware Optimization
协作研究:实时数据的电力系统动力学:建模、推理和稳定性感知优化
  • 批准号:
    2150571
  • 财政年份:
    2022
  • 资助金额:
    $ 54.77万
  • 项目类别:
    Standard Grant
Collaborative Research: Power Systems Dynamics from Real-Time Data: Modeling, Inference, and Stability-Aware Optimization
协作研究:实时数据的电力系统动力学:建模、推理和稳定性感知优化
  • 批准号:
    2150596
  • 财政年份:
    2022
  • 资助金额:
    $ 54.77万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Real-time Criticality-Aware Neural Networks for Mission-critical Cyber-Physical Systems
合作研究:CPS:中:用于关键任务网络物理系统的实时关键性感知神经网络
  • 批准号:
    2038658
  • 财政年份:
    2021
  • 资助金额:
    $ 54.77万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了