CAREER: Unlocking Reactivity-Based Separations of Olefins using Metal-Organic Frameworks
职业:使用金属有机框架解锁基于反应性的烯烃分离
基本信息
- 批准号:2047627
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Chemical separations, which involve partitioning a mixture of compounds into its individual components, are critical to the industrial production of commodities such as plastics. Separations account for 15% of energy consumption in the United States alone. The development of new energy-efficient separations could greatly reduce greenhouse gas emissions, improve the sustainability of the chemical industry, and decrease the cost of everyday consumer products. Traditionally, separations are carried out based on differences in the physical properties of chemicals, such as their boiling points. Here, the investigator will develop sponge-like materials capable of separating chemicals based on their differing reactivities. This will enable industrial separations with much higher selectivities for one component over another and potentially unlock new types of separations. This project will be highly interdisciplinary, involving aspects of chemistry, chemical engineering, and materials science, which will help strengthen communication between these fields. In addition, new scientists from underrepresented communities will be trained, improving the diversity of the STEM workforce. As part of the project, the public, especially underserved students in rural communities, will learn about the importance of chemical separations, sustainability, and green technologies.Unsaturated molecules such as olefins are critical building blocks for the global production of polymers. However, polymerization reactions typically require ultrapure streams of olefins to proceed efficiently. Currently, mixtures containing olefins (including mixtures of olefins/paraffins or olefin isomers) are inefficiently separated based on small differences in their physical properties. This project seeks to separate mixtures containing olefins based on differences in their reactivities rather than physical properties. Specifically, porous crystalline materials known as metal-organic frameworks (MOF) will be designed such that they can undergo reversible cycloaddition reactions with olefins. These novel MOF systems will allow for separations to be carried out with unparalleled selectivities and for the production of ultrapure olefin product streams in an energy-efficient manner. The materials design strategy is potentially generalizable to separations involving a range of unsaturated molecules, including carbon dioxide, reflecting the versatility of this approach. The separation efficiency of the strategy will be assessed using gas adsorption analysis and breakthrough measurements. The reactivity of the adsorbents will be characterized using in situ solid-state nuclear magnetic resonance, X-ray diffraction, and Infrared spectroscopy. This interdisciplinary research program will forge new connections between chemists, chemical engineers, and materials scientists.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
化学分离是指将混合物分离成单独的组分,对于塑料等商品的工业生产至关重要。仅在美国,分离就占能源消耗的15%。开发新的节能分离技术可以大大减少温室气体排放,提高化学工业的可持续性,并降低日常消费品的成本。传统上,分离是基于化学品的物理性质的差异进行的,例如它们的沸点。在这里,研究人员将开发海绵状材料,能够根据不同的反应性分离化学物质。这将使工业分离对一种组分的选择性比另一种组分高得多,并可能开启新的分离类型。该项目将是高度跨学科的,涉及化学,化学工程和材料科学方面,这将有助于加强这些领域之间的交流。此外,来自代表性不足社区的新科学家将接受培训,提高STEM劳动力的多样性。作为该项目的一部分,公众,特别是农村社区的贫困学生,将了解化学分离、可持续性和绿色技术的重要性。烯烃等不饱和分子是全球聚合物生产的关键组成部分。然而,聚合反应通常需要烯烃的超纯料流以有效地进行。目前,含有烯烃的混合物(包括烯烃/链烷烃或烯烃异构体的混合物)基于其物理性质的微小差异而被低效地分离。该项目旨在根据反应性而不是物理性质的差异来分离含有烯烃的混合物。具体而言,被称为金属有机框架(MOF)的多孔结晶材料将被设计成使得它们可以与烯烃进行可逆的环加成反应。这些新的MOF系统将允许以无与伦比的选择性进行分离,并以节能的方式生产超纯烯烃产物流。材料的设计策略是潜在的推广到涉及一系列的不饱和分子,包括二氧化碳的分离,反映了这种方法的多功能性。将使用气体吸附分析和穿透测量来评估该策略的分离效率。吸附剂的反应性将使用原位固态核磁共振、X射线衍射和红外光谱进行表征。这个跨学科的研究项目将在化学家、化学工程师和材料科学家之间建立新的联系。这个奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Carbon Capture Beyond Amines: CO 2 Sorption at Nucleophilic Oxygen Sites in Materials
- DOI:10.1002/cnma.202200436
- 发表时间:2022-11
- 期刊:
- 影响因子:3.8
- 作者:Mary E. Zick;Do-Hyong Cho;Jianheng Ling;P. Milner
- 通讯作者:Mary E. Zick;Do-Hyong Cho;Jianheng Ling;P. Milner
Upcycling of Dyed Polyester Fabrics into Copper-1,4-Benzenedicarboxylate (CuBDC) Metal–Organic Frameworks
- DOI:10.1021/acs.iecr.3c00226
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:Yelin Ko;Tyler J. Azbell;P. Milner;J. Hinestroza
- 通讯作者:Yelin Ko;Tyler J. Azbell;P. Milner;J. Hinestroza
Reactive Crystallization via Metal–Organic-Framework Formation Enables Separation of Terephthalic Acid from Textile Impurities
通过金属有机骨架形成的反应结晶能够从纺织品杂质中分离对苯二甲酸
- DOI:10.1021/acssuschemeng.2c05496
- 发表时间:2023
- 期刊:
- 影响因子:8.4
- 作者:Nason, Abigail K.;Jerozal, Ronald T.;Milner, Phillip J.;Suntivich, Jin
- 通讯作者:Suntivich, Jin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Phillip Milner其他文献
Phillip Milner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Unlocking the potential of mini-MASS in UK waters
释放英国水域迷你 MASS 的潜力
- 批准号:
10109319 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Launchpad
Unlocking the mechanisms of vibro-acoustic communication in termites
解锁白蚁振动声学通讯机制
- 批准号:
DP240101536 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Discovery Projects
Unlocking the sensory secrets of predatory wasps: towards predictive tools for managing wasps' ecosystem services in the Anthropocene
解开掠食性黄蜂的感官秘密:开发用于管理人类世黄蜂生态系统服务的预测工具
- 批准号:
NE/Y001397/1 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Research Grant
Collaborative Research: Unlocking the evolutionary history of Schiedea (carnation family, Caryophyllaceae): rapid radiation of an endemic plant genus in the Hawaiian Islands
合作研究:解开石竹科(石竹科)石竹的进化史:夏威夷群岛特有植物属的快速辐射
- 批准号:
2426560 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Unlocking the archive: reuniting Indigenous languages and their communities
解锁档案:重新统一土著语言及其社区
- 批准号:
IM230100544 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Mid-Career Industry Fellowships
Unlocking mine waste potential: carbon sequestration and metals extraction
释放矿山废物潜力:碳封存和金属提取
- 批准号:
LP230100371 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Linkage Projects
Unlocking self-healing bio-concrete through multiscale modelling
通过多尺度建模解锁自愈生物混凝土
- 批准号:
DP240100851 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Discovery Projects
Unlocking the ion selectivity of lithium superionic conductor membranes
解锁锂超离子导体膜的离子选择性
- 批准号:
DP240100497 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Discovery Projects
Unlocking the potential of poly(ionic liquids) for electrochemical sensing
释放聚(离子液体)电化学传感的潜力
- 批准号:
DP240100014 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Discovery Projects
Unlocking the secrets of modular representations
解开模块化表示的秘密
- 批准号:
FL230100256 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Australian Laureate Fellowships














{{item.name}}会员




