CAREER: Biochemical and Structural Mechanism of the WASH Regulatory Complex

职业:WASH 调节复合体的生化和结构机制

基本信息

  • 批准号:
    2047640
  • 负责人:
  • 金额:
    $ 161.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-02-01 至 2026-01-31
  • 项目状态:
    未结题

项目摘要

Like a city, the cell is filled with heavy traffic. Cellular traffic is made up of tiny parcels called vesicles that contain molecules to be sent to their correct destinations. Movement of traffic allows the cell to perform important tasks, such as responding to the environment, absorbing nutrients, and surviving. Larger membrane-enclosed structures called endosomes act as a “parcel distribution center” to decide where the molecules are sent to. Endosomes are coated with fibers made up of a protein called actin. Similar to muscles and bones in the human body, actin fibers give endosomes proper shape and strength. Without actin, the endosome collapses, and the traffic stalls. The overall goal of this project is to understand how the cell produces actin fibers to support the structure and function of endosomes. Results of this project will provide fundamental knowledge about how endosomes form correct structures and direct traffic properly. In parallel, the PI will integrate multiple new approaches to improve the infrastructure of biochemical education and research, including creating new virtual lab software to help undergraduate students study biochemistry lab courses, establishing a bimonthly campus-wide biological science forum to help graduate students and labs share research and collaborate, and offering strong undergraduate research experiences both in the traditional lab setting and in a new virtual group-discussion format. The overall goal of this project is to understand actin cytoskeletal regulation at endosomal membranes. Specifically focused on a central regulator of endosomal actin named the WASH Regulatory Complex (SHRC), the project aims to: 1) determine how the SHRC is activated by various membrane ligands; 2) identify and characterize new membrane ligands, and; 3) solve high-resolution structures of the SHRC in various activation states. Successful completion of the project will fill a large gap in understanding how actin structures are dynamically assembled at endosomal membranes, how actin rearrangements regulate endosomal structure and function, and how the cell may use similar principles to control actin dynamics at other intracellular organelles and trafficking pathways. In addition, the project will develop new proteomic tools, discover new molecules important to endosomal trafficking, and identify new structural mechanisms, which together will provide unprecedented opportunities for biologists to manipulate and study endosomal trafficking in cells.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
就像一个城市,细胞充满了繁忙的交通。 细胞交通是由称为囊泡的微小包裹组成的,囊泡包含要发送到正确目的地的分子。 交通的移动允许细胞执行重要的任务,例如对环境做出反应,吸收营养和生存。 更大的膜封闭结构称为内体作为一个“包裹分布中心”,以决定分子被发送到哪里。 内体被一种叫做肌动蛋白的蛋白质纤维包裹着。类似于人体的肌肉和骨骼,肌动蛋白纤维赋予内体适当的形状和强度。 没有肌动蛋白,内体就会崩溃,交通就会停滞。这个项目的总体目标是了解细胞如何产生肌动蛋白纤维来支持内体的结构和功能。 该项目的结果将提供关于内体如何形成正确结构和正确引导交通的基础知识。 与此同时,PI将整合多种新方法来改善生物化学教育和研究的基础设施,包括创建新的虚拟实验室软件,以帮助本科生学习生物化学实验室课程,建立一个双月的校园生物科学论坛,以帮助研究生和实验室分享研究和合作,并在传统的实验室环境和新的虚拟小组讨论形式中提供强大的本科生研究经验。这个项目的总体目标是了解肌动蛋白在内体膜的细胞骨架调节。该项目特别关注名为WASH调节复合物(SHRC)的内体肌动蛋白的中央调节器,旨在:1)确定SHRC如何被各种膜配体激活; 2)识别和表征新的膜配体; 3)解决SHRC在各种激活状态下的高分辨率结构。 该项目的成功完成将填补理解肌动蛋白结构如何在内体膜上动态组装的巨大空白,肌动蛋白重排如何调节内体结构和功能,以及细胞如何使用类似的原理来控制其他细胞器和运输途径的肌动蛋白动力学。此外,该项目还将开发新的蛋白质组学工具,发现对内体运输重要的新分子,并确定新的结构机制,这将为生物学家操纵和研究细胞内体运输提供前所未有的机会。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Baoyu Chen其他文献

PMAN: Progressive Multi-Attention Network for Human Pose Transfer
Experimental performance of a pump and the related vortices in a pump intake of a model pump station
模型泵站泵入口及相关涡流的实验性能
  • DOI:
    10.1088/1742-6596/1909/1/012045
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guo Miao;Huijun Zou;Baoyu Chen;Zuo Zhigang;Liu Shuhong
  • 通讯作者:
    Liu Shuhong
Application of multimodal standardized analgesia under the concept of enhanced recovery after surgery in laparoscopic radical colorectal cancer surgery
加速康复理念下多模式标准化镇痛在腹腔镜结直肠癌根治术中的应用
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Lu Cao;Le Zhang;Baoyu Chen;Likun Yan;Xianpeng Shi;Lifei Tian
  • 通讯作者:
    Lifei Tian
Exploring the relationship between lightning discharge current and plasma spectrum
  • DOI:
    10.1016/j.jastp.2024.106307
  • 发表时间:
    2024-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Hong Deng;Facai Su;Ping Yuan;Baoyu Chen;Tingting An;Linhui Chen;Yingying An;Guorong Liu
  • 通讯作者:
    Guorong Liu
ITIMCA: Image-text information and cross-attention for multi-modal cassava leaf disease classification based on a novel multi-modal dataset in natural environments
ITIMCA:基于自然环境中新颖多模态数据集的用于多模态木薯叶病害分类的图像-文本信息和交叉注意力
  • DOI:
    10.1016/j.cropro.2024.106981
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Huinian Li;Baoyu Chen;Jingjia Chen;Shuting Li;Feiyong He;Yingbiao Hu
  • 通讯作者:
    Yingbiao Hu

Baoyu Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
  • 批准号:
    2339759
  • 财政年份:
    2024
  • 资助金额:
    $ 161.6万
  • 项目类别:
    Continuing Grant
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
  • 批准号:
    10604822
  • 财政年份:
    2023
  • 资助金额:
    $ 161.6万
  • 项目类别:
Elucidating the molecular basis and expanding the biological applications of the glycosyltransferases using biochemical and structural biology approaches
利用生化和结构生物学方法阐明糖基转移酶的分子基础并扩展其生物学应用
  • 批准号:
    23K14138
  • 财政年份:
    2023
  • 资助金额:
    $ 161.6万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Structural and biochemical characterization of VCPIP1 and VCP complex
VCPIP1 和 VCP 复合物的结构和生化表征
  • 批准号:
    10675974
  • 财政年份:
    2023
  • 资助金额:
    $ 161.6万
  • 项目类别:
Biochemical and structural characterization of the cell wall synthesis complex required for bacterial division
细菌分裂所需的细胞壁合成复合物的生化和结构表征
  • 批准号:
    10750639
  • 财政年份:
    2023
  • 资助金额:
    $ 161.6万
  • 项目类别:
Multi-Scale Computer Modeling of the Structural Impact and Biochemical Reactions of Damaged DNA
受损 DNA 的结构影响和生化反应的多尺度计算机建模
  • 批准号:
    RGPIN-2016-04568
  • 财政年份:
    2022
  • 资助金额:
    $ 161.6万
  • 项目类别:
    Discovery Grants Program - Individual
Structural and Biochemical Effects of Capsid-targeting Molecules on HIV-1 Capsid Assembly
衣壳靶向分子对 HIV-1 衣壳组装的结构和生化影响
  • 批准号:
    10619783
  • 财政年份:
    2022
  • 资助金额:
    $ 161.6万
  • 项目类别:
Molecular, Biochemical, and Structural Studies of the Mechanism of S-RNase-Based Self-Incompatibility in Petunia
矮牵牛基于 S-RNase 的自交不亲和机制的分子、生化和结构研究
  • 批准号:
    2138062
  • 财政年份:
    2022
  • 资助金额:
    $ 161.6万
  • 项目类别:
    Continuing Grant
Biochemical, structural and molecular dissection of androgen receptor transcriptional activity
雄激素受体转录活性的生化、结构和分子剖析
  • 批准号:
    10655002
  • 财政年份:
    2022
  • 资助金额:
    $ 161.6万
  • 项目类别:
Develop enabling biochemical and structural tools for dissecting the roles of PKD2L2 in metabolism
开发有利的生化和结构工具来剖析 PKD2L2 在代谢中的作用
  • 批准号:
    10452211
  • 财政年份:
    2022
  • 资助金额:
    $ 161.6万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了