Preparing High School Students for Careers in Machine Learning through Mentored Scientific Research
通过指导科学研究为高中生从事机器学习职业做好准备
基本信息
- 批准号:2049022
- 负责人:
- 金额:$ 148.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Artificial Intelligence (AI) is quickly becoming ubiquitous in STEM and across industries, and the education field is grappling with how best to teach AI concepts to K12 audiences. Simultaneously, the AI professional community suffers from a lack of diversity that excludes women and people of color from a dynamic section of the economy and a path for upward mobility. Equally important, a lack of diverse perspectives can risk automating discriminatory practices based on biased algorithms and biased data sets. For over a decade, the Science Research Mentoring Program, a STEM workforce development initiative of the American Museum of Natural History, has provided New York City high school students from underserved populations with the experience of working closely with scientists, increasing access to science fields and careers through research opportunities and mentorship. In this project, the Museum, in partnership with the Massachusetts Institute of Technology, will undertake a three-year research project to innovate within this well-established program by creating opportunities for high school students to learn and apply machine learning (ML), a subset of AI, to scientific problems in the natural sciences. The project responds to the imperative to prepare a diverse student body for a workplace that will require a sophisticated understanding of AI and ML by advancing students' skills and knowledge of ML, promoting awareness of AI and computationally-demanding STEM careers, and fostering positive dispositions towards these fields. This project is funded by the Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.Through this project, 120 students will participate in a four-week Summer Institute specifically focused on developing skills and understanding of ML applications and careers, and 30 of these students will subsequently work in research labs over the academic year with scientists who use ML. A design-based research approach will be used to develop and refine the Summer Institute informed by a team consisting of science educators, scientists, AI experts, and program alumni. Student participants will be recruited specifically from partner organizations that primarily serve Black, Hispanic/Latinx, and first-generation college-bound students. A mixed-method research study will gather data on students' acquisition of ML knowledge and skills, attitudes toward and perceptions of AI, and AI career awareness and interest using pre-post survey instruments, artifact review, semi-structured observations, and interviews. Research findings will be disseminated through conferences, articles, and social media. The curriculum and research tools will be publicly available and readily scalable, leveraging the New York City Science Research Mentoring Consortium, a network of 24 research and cultural institutions serving 500 students annually.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能(AI)在STEM和各个行业中迅速普及,教育领域正在努力解决如何最好地向K12受众教授AI概念的问题。与此同时,人工智能专业社区缺乏多样性,将女性和有色人种排除在经济的动态部分和向上流动的道路之外。同样重要的是,缺乏多样化的观点可能会导致基于有偏见的算法和有偏见的数据集的歧视性做法自动化。十多年来,科学研究指导计划,美国自然历史博物馆的STEM劳动力发展计划,为来自服务不足人群的纽约市高中生提供了与科学家密切合作的经验,通过研究机会和指导增加了进入科学领域和职业的机会。在这个项目中,博物馆将与马萨诸塞州理工学院合作开展一个为期三年的研究项目,通过为高中生创造学习和应用机器学习(ML)的机会,在这个成熟的计划中进行创新,AI的一个子集,在自然科学中的科学问题。该项目响应了为工作场所准备多元化学生团体的必要性,这需要通过提高学生的ML技能和知识,促进对AI和计算要求苛刻的STEM职业的认识,并培养对这些领域的积极态度,对AI和ML进行深入了解。该项目由学生和教师创新技术体验(ITEST)计划资助,该计划支持建立对实践,计划要素,背景和过程的理解的项目,有助于增加学生对科学,技术,工程和数学(STEM)以及信息和通信技术(ICT)职业的知识和兴趣。120名学生将参加为期四周的暑期研究所,专门致力于发展ML应用和职业的技能和理解,其中30名学生将在学年期间与使用ML的科学家一起在研究实验室工作。基于设计的研究方法将用于开发和完善暑期研究所,由科学教育工作者,科学家,人工智能专家和计划校友组成的团队提供信息。学生参与者将专门从主要为黑人,西班牙裔/拉丁裔和第一代大学生服务的合作伙伴组织招募。一项混合方法的研究将收集有关学生获得ML知识和技能,对AI的态度和看法,以及AI职业意识和兴趣的数据,使用事前事后调查工具,工件审查,半结构化观察和访谈。研究结果将通过会议、文章和社交媒体传播。课程和研究工具将公开提供,并随时可扩展,利用纽约市科学研究指导联盟,一个由24个研究和文化机构组成的网络,每年为500名学生提供服务。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Weckel其他文献
Study of an effective machine learning-integrated science curriculum for high school youth in an informal learning setting
- DOI:
10.1186/s40594-025-00543-5 - 发表时间:
2025-04-19 - 期刊:
- 影响因子:8.000
- 作者:
Gabrielle Rabinowitz;Katherine S. Moore;Safinah Ali;Mark Weckel;Irene Lee;Preeti Gupta;Rachel Chaffee - 通讯作者:
Rachel Chaffee
Cats in the city: urban cat distribution is influenced by habitat characteristics, anthropogenic factors, and the presence of coyotes
- DOI:
10.1007/s11252-025-01709-3 - 发表时间:
2025-04-08 - 期刊:
- 影响因子:2.400
- 作者:
Angelinna Bradfield;Chris Nagy;Mark Weckel;David C. Lahti;Bobby Habig - 通讯作者:
Bobby Habig
Mark Weckel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Preparing Central Oregon Community College Students for Careers in Information Systems
俄勒冈中部社区学院学生为信息系统职业做好准备
- 批准号:
2220953 - 财政年份:2023
- 资助金额:
$ 148.04万 - 项目类别:
Standard Grant
Preparing Students for Careers in Biotechnology
为学生从事生物技术职业做好准备
- 批准号:
2322712 - 财政年份:2023
- 资助金额:
$ 148.04万 - 项目类别:
Standard Grant
Preparing College Students who Enter from High School or Transfer from Community Colleges for STEM Careers and Graduate School
为从高中进入或从社区学院转学的大学生做好 STEM 职业和研究生院的准备
- 批准号:
2029883 - 财政年份:2021
- 资助金额:
$ 148.04万 - 项目类别:
Standard Grant
Preparing Students for Technical Careers in Autonomous Technologies for Commercial Trucks and Off-Highway Vehicles
为学生从事商用卡车和非公路车辆自主技术领域的技术职业做好准备
- 批准号:
2054997 - 财政年份:2021
- 资助金额:
$ 148.04万 - 项目类别:
Standard Grant
Preparing Diverse Transfer Students for Research Careers in Neuroscience
为多样化的转学生从事神经科学研究工作做好准备
- 批准号:
10535445 - 财政年份:2020
- 资助金额:
$ 148.04万 - 项目类别:
Preparing Diverse Transfer Students for Research Careers in Neuroscience
为多样化的转学生从事神经科学研究工作做好准备
- 批准号:
10318200 - 财政年份:2020
- 资助金额:
$ 148.04万 - 项目类别:
Spectrum Innovates Pathway: Preparing Autistic Students to Enter Higher Education and Careers in Advanced Technological Fields
Spectrum 创新途径:为自闭症学生进入高等教育和先进技术领域的职业做好准备
- 批准号:
2000670 - 财政年份:2020
- 资助金额:
$ 148.04万 - 项目类别:
Standard Grant
Empiric Empires: Game-based learning preparing students for health careers
经验帝国:基于游戏的学习为学生的健康职业做好准备
- 批准号:
10007099 - 财政年份:2020
- 资助金额:
$ 148.04万 - 项目类别:
Worker 4.0: Preparing Students for Today's Technician Careers
Worker 4.0:帮助学生为当今的技术员职业做好准备
- 批准号:
1902428 - 财政年份:2019
- 资助金额:
$ 148.04万 - 项目类别:
Standard Grant
Breaking the Cycle through Computational Physics: Preparing West Virginia's Rural, First Generation College Students for the Careers of the Future
通过计算物理打破循环:让西弗吉尼亚州农村的第一代大学生为未来的职业做好准备
- 批准号:
1833694 - 财政年份:2019
- 资助金额:
$ 148.04万 - 项目类别:
Standard Grant