REU Site: The future of discovery: training students to build and apply open source machine learning models and tools
REU 网站:发现的未来:培训学生构建和应用开源机器学习模型和工具
基本信息
- 批准号:2050195
- 负责人:
- 金额:$ 40.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-15 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Machine learning is a powerful tool that has been successfully applied to a variety of problems that until recently were deemed too difficult or impossible for computers to solve. This REU Site project gives participating students experience in many aspects of machine learning, ranging from developing open source machine learning models and tools to applying them in the real world. The work carried out by the students will lead to research advances in the fields of these projects and the models and tools they develop will be open-source, leading to them being available to other fields where these models can be used to make additional advances. Machine learning is an emerging field with limitless opportunities to design innovative services and products that will enhance the lives of billions of people, help to address emerging challenges in climate, food, water, energy, transportation, and healthcare, and advance science and engineering discoveries in ways unimaginable today. The project contributes to the development of a highly specialized workforce trained to utilize advanced machine learning methods, and to contribute to open source software. Students from diverse backgrounds and computational/data-oriented disciplines are being trained to apply machine learning and to participate in research where these tools are at the center of scientific discovery, preparing them to apply machine learning methods in other fields and providing them with the foundation and motivation to pursue advanced graduate studies. This project serves NSF's mission by promoting the progress of science and advancing national health, prosperity and welfare. The goals of this project are to train undergraduate students, focusing on those from minority serving institutions, in machine learning and open source software, where they will then apply these skills to mentor-guided research projects. This is an on-site summer program at the University of Illinois that brings to campus 10 students per year and is based on matching their preferences and interests to those of a group of mentors, so that each student works with a pair of mentors, one from the project's research area and the other with expertise in machine learning. This program increases the students' knowledge of research and graduate school, and in many cases, stimulates their interest in continuing to graduate school, while in other cases, trains students with skills that enable them to seek data science and data analysis jobs in industry, increasing diversity in these graduate programs and in industry. By their presence in the program as continuing undergraduates, when the students return to their university, they will build a relationship between Illinois and that university, their faculty, and their peers that encourages future students to participate in the program and provides the basis for future joint research projects.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习是一种强大的工具,已成功应用于各种问题,直到最近被认为太难或不可能由计算机解决。这个REU网站项目为参与的学生提供了机器学习许多方面的经验,从开发开源机器学习模型和工具到将其应用于真实的世界。学生们开展的工作将导致这些项目领域的研究进展,他们开发的模型和工具将是开源的,从而使他们可以用于其他领域,这些模型可以用来取得额外的进展。机器学习是一个新兴领域,有无限的机会设计创新的服务和产品,改善数十亿人的生活,帮助解决气候,食品,水,能源,交通和医疗保健方面的新兴挑战,并以今天无法想象的方式推进科学和工程发现。该项目有助于发展一支经过培训的高度专业化的劳动力队伍,以利用先进的机器学习方法,并为开源软件做出贡献。来自不同背景和面向计算/数据学科的学生正在接受培训,以应用机器学习并参与研究,这些工具是科学发现的中心,为他们在其他领域应用机器学习方法做好准备,并为他们提供基础和动力,以追求高级研究生课程。该项目通过促进科学进步和促进国家健康、繁荣和福利来服务于NSF的使命。 该项目的目标是培养本科生,重点是那些来自少数民族服务机构,在机器学习和开源软件,在那里他们将这些技能应用到导师指导的研究项目。这是伊利诺伊大学的一个现场暑期项目,每年为校园带来10名学生,并将他们的偏好和兴趣与一组导师的偏好和兴趣相匹配,以便每个学生与一对导师一起工作,一个来自项目的研究领域,另一个具有机器学习方面的专业知识。该计划增加了学生对研究和研究生院的了解,在许多情况下,激发了他们继续研究生院的兴趣,而在其他情况下,培养学生的技能,使他们能够在行业中寻求数据科学和数据分析工作,增加这些研究生课程和行业的多样性。通过他们作为继续本科生参加该项目,当学生回到他们的大学时,他们将建立伊利诺伊州与该大学,他们的教师,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Novel Approaches Toward Scalable Composable Workflows in Hyper-Heterogeneous Computing Environments
- DOI:10.1145/3624062.3626283
- 发表时间:2023-11
- 期刊:
- 影响因子:0
- 作者:Jonathan Bader;Jim Belak;Matt Bement;Matthew Berry;Robert Carson;Daniela Cassol;Stephen Chan;John Coleman;Kastan Day;Alejandro Duque;Kjiersten Fagnan;Jeff Froula;S. Jha;Daniel S. Katz;Piotr Kica;Volodymyr V. Kindratenko;Edward Kirton;Ramani Kothadia;Daniel E. Laney;Fabian Lehmann;Ulf Leser;S. Lichołai;Maciej Malawski;Mario Melara;Elais Player Jackson;M. Rolchigo;Setareh Sarrafan;Seung-Jin Sul;Abdullah Syed;L. Thamsen;Mikhail Titov;M. Turilli;Silvina Caíno-Lores;Anirban Mandal
- 通讯作者:Jonathan Bader;Jim Belak;Matt Bement;Matthew Berry;Robert Carson;Daniela Cassol;Stephen Chan;John Coleman;Kastan Day;Alejandro Duque;Kjiersten Fagnan;Jeff Froula;S. Jha;Daniel S. Katz;Piotr Kica;Volodymyr V. Kindratenko;Edward Kirton;Ramani Kothadia;Daniel E. Laney;Fabian Lehmann;Ulf Leser;S. Lichołai;Maciej Malawski;Mario Melara;Elais Player Jackson;M. Rolchigo;Setareh Sarrafan;Seung-Jin Sul;Abdullah Syed;L. Thamsen;Mikhail Titov;M. Turilli;Silvina Caíno-Lores;Anirban Mandal
Spatial Analysis of Tumor Heterogeneity Using Machine Learning Techniques
使用机器学习技术对肿瘤异质性进行空间分析
- DOI:10.1109/mass56207.2022.00123
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Mitra, Chancharik;Yoo, Jin Young;Madak-Erdogan, Zeynep;Soliman, Aiman
- 通讯作者:Soliman, Aiman
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Volodymyr Kindratenko其他文献
Enabling real-time multi-messenger astrophysics discoveries with deep learning
利用深度学习实现实时多信使天体物理学发现
- DOI:
10.1038/s42254-019-0097-4 - 发表时间:
2019-10-03 - 期刊:
- 影响因子:39.500
- 作者:
E. A. Huerta;Gabrielle Allen;Igor Andreoni;Javier M. Antelis;Etienne Bachelet;G. Bruce Berriman;Federica B. Bianco;Rahul Biswas;Matias Carrasco Kind;Kyle Chard;Minsik Cho;Philip S. Cowperthwaite;Zachariah B. Etienne;Maya Fishbach;Francisco Forster;Daniel George;Tom Gibbs;Matthew Graham;William Gropp;Robert Gruendl;Anushri Gupta;Roland Haas;Sarah Habib;Elise Jennings;Margaret W. G. Johnson;Erik Katsavounidis;Daniel S. Katz;Asad Khan;Volodymyr Kindratenko;William T. C. Kramer;Xin Liu;Ashish Mahabal;Zsuzsa Marka;Kenton McHenry;J. M. Miller;Claudia Moreno;M. S. Neubauer;Steve Oberlin;Alexander R. Olivas;Donald Petravick;Adam Rebei;Shawn Rosofsky;Milton Ruiz;Aaron Saxton;Bernard F. Schutz;Alex Schwing;Ed Seidel;Stuart L. Shapiro;Hongyu Shen;Yue Shen;Leo P. Singer;Brigitta M. Sipocz;Lunan Sun;John Towns;Antonios Tsokaros;Wei Wei;Jack Wells;Timothy J. Williams;Jinjun Xiong;Zhizhen Zhao - 通讯作者:
Zhizhen Zhao
INSTRAS: INfrared Spectroscopic imaging-based TRAnsformers for medical image Segmentation
- DOI:
10.1016/j.mlwa.2024.100549 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:
- 作者:
Hangzheng Lin;Kianoush Falahkheirkhah;Volodymyr Kindratenko;Rohit Bhargava - 通讯作者:
Rohit Bhargava
Volodymyr Kindratenko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Volodymyr Kindratenko', 18)}}的其他基金
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411295 - 财政年份:2024
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: Diamond: Democratizing Large Neural Network Model Training for Science
合作研究:框架:钻石:科学大型神经网络模型训练的民主化
- 批准号:
2311768 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: Machine learning and FPGA computing for real-time applications in big-data physics experiments
合作研究:框架:大数据物理实验中实时应用的机器学习和 FPGA 计算
- 批准号:
1931561 - 财政年份:2019
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
SGER: Investigating Application Analysis and Design Methodologies for Computational Accelerators
SGER:研究计算加速器的应用分析和设计方法
- 批准号:
0810563 - 财政年份:2008
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
Geoscience Applications on Petascale Systems: Requirements Workshops; Early in August-2005 for a 4-6 Weeks Period
Petascale 系统上的地球科学应用:需求研讨会;
- 批准号:
0540688 - 财政年份:2005
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
相似国自然基金
新型WDR5蛋白Win site抑制剂的合理设计、合成及其抗肿瘤活性研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
具有共形结构的高性能Ta4SiTe4基有机/无机复合柔性热电薄膜
- 批准号:52172255
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于重要农地保护LESA(Land Evaluation and Site Assessment)体系思想的高标准基本农田建设研究
- 批准号:41340011
- 批准年份:2013
- 资助金额:20.0 万元
- 项目类别:专项基金项目
相似海外基金
REU Site: Polymer Innovation for a Sustainable Future
REU 网站:聚合物创新打造可持续未来
- 批准号:
2348780 - 财政年份:2024
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
REU site: Chemistry for a Sustainable Future - an International Research Experience in the UK
REU 网站:化学促进可持续未来 - 英国的国际研究经验
- 批准号:
2244043 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
REU Site: Materials for Future Computing
REU 站点:未来计算材料
- 批准号:
2244316 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
REU Site: Smart and Secure Future Computing
REU 站点:智能、安全的未来计算
- 批准号:
2244424 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
REU Site: Electronic Materials Evaluation Research for Greater Exposure to Future Technology Careers (EMERGE)
REU 网站:电子材料评估研究,以更好地接触未来技术职业 (EMERGE)
- 批准号:
2150281 - 财政年份:2022
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
REU Site: Advanced Manufacturing for a Sustainable Energy Future
REU 网站:先进制造打造可持续能源未来
- 批准号:
2051090 - 财政年份:2021
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
REU Site: Blockchain Technology for a Secure Data and Communication Future
REU 网站:区块链技术打造安全数据和通信的未来
- 批准号:
2051127 - 财政年份:2021
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
REU Site: Polymer Innovation for a Sustainable Future
REU 网站:聚合物创新打造可持续未来
- 批准号:
1950387 - 财政年份:2020
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
REU Site: Developing a Clean Energy Future with Underserved Students
REU 网站:与服务不足的学生一起开发清洁能源的未来
- 批准号:
1852447 - 财政年份:2019
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant