ERASE-PFAS: Collaborative Research: Development of Quantitative Tools to Assess the Mechanisms and Full Poten-tial of UV-ARPs for the Treatment of PFASs in Water

ERASE-PFAS:合作研究:开发定量工具来评估 UV-ARP 处理水中 PFAS 的机制和全部潜力

基本信息

项目摘要

PFAS (per- and polyfluoroalkyl substances) are a group of man-made chemicals that have been widely used for many decades. PFAS contain numerous carbon-fluorine bonds that makes them extremely stable. This stability has led to them being called “forever chemicals.” The broad use of PFAS has resulted in widespread contamination of soil and water. This finding is of great concern, as PFAS exposure have been linked to serious health effects, such as cancer and birth defects. The urgency of this problem is made greater because PFAS are resistant to most conventional chemical and biological water treatment processes. One new technology that has shown promise for PFAS destruction in water is Advanced Reduction Processes (ARPs). ARPs produce electrons in water, which can react with PFAS to degrade halogenated compounds like PFAS. The goal of this project is to determine the potential of ARPs for remediating PFAS contaminated water. This goal will be achieved through research to: i) identify the important reactions occurring in the electron-based PFAS destruction process, and ii) develop quantitative tools for predicting PFAS degradation in ARP systems. Successful completion of this research holds promise to develop new technology to effectively treat PFAS contaminated water. Additional benefits to society result from increasing the Nation’s STEM workforce through the engagement and training of graduate and undergraduate students in research, as well as training of high school STEM teachers during summer training programs.Hydrated electrons are one of the strongest known reductants. Recent studies show that the hydrated electron is capable of reducing fluorine atoms in PFAS, including PFOA and PFOS, to non-toxic fluoride. However, a significant barrier preventing application of hydrated electrons for PFAS destruction is the lack of quantitative knowledge of hydrated electron-based processes in real-world waters. The goal of this project is to develop the quantitative data and tools necessary to assess the full potential of Ultraviolet-based Advanced Reduction Processes (UV-ARP) by addressing the underlying mechanistic limitations of hydrated electron-based PFAS degradation. This overall goal will be realized by focusing on three complementary objectives to: i) characterize the hydrated electron-based destruction efficiencies of parent PFAS and absolute fluoride yields, ii) develop the quantitative methods needed to predict PFAS degradation rates by UV-ARPs in real-world waters, and iii) use these quantitative tools to develop a “best case” UV-ARP treatment and compare this optimized system to other PFAS degradation technologies. These objectives will be accomplished using state-of-the-science time-resolved and steady-state radiolysis, combined with bench-scale UV-ARP experiments and kinetic modeling. The research will be integrated with education and outreach through high school STEM teacher training programs and engagement of undergraduate researchers at a primarily undergraduate institution. Additional benefits to society result from the sharing of research findings and recommendations for water treatment practitioners through partnership with the Orange County Water District, one of the largest full-scale advanced water treatment facilities in the Nation. Successful completion of this research will advance the fundamental science and engineering potential of ARPs for PFAS treatment in real-world waters.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
全氟烷基物质(全氟烷基和多氟烷基物质)是一组被广泛使用了几十年的人造化学品。全氟辛烷磺酸含有大量的碳氟键,这使它们非常稳定。这种稳定性使它们被称为“永远的化学物质”。全氟辛烷磺酸的广泛使用导致了广泛的土壤和水污染。这一发现非常令人担忧,因为接触全氟辛烷磺酸与严重的健康影响有关,如癌症和出生缺陷。这一问题的紧迫性变得更加紧迫,因为全氟化肥对大多数传统的化学和生物水处理过程具有抵抗力。在水中销毁全氟辛烷磺酸的一项新技术是高级还原工艺(ARPS)。Arps在水中产生电子,可以与PFAS反应,降解像PFAS这样的卤化化合物。该项目的目标是确定ARPS修复全氟辛烷磺酸污染水的潜力。这一目标将通过以下研究来实现:i)确定电子基全氟辛烷磺酸销毁过程中发生的重要反应,以及ii)开发用于预测全氟辛烷磺酸在ARP系统中降解的定量工具。这项研究的成功完成有望开发有效处理全氟辛烷磺酸污染水的新技术。通过参与和培训研究生和本科生的研究工作,以及在暑期培训计划期间培训高中STEM教师,增加国家STEM劳动力带来的其他社会好处。水合电子是已知最强的还原剂之一。最近的研究表明,水合电子能够将全氟辛烷磺酸和全氟辛烷磺酸中的氟原子还原为无毒的氟化物。然而,阻碍水合电子应用于全氟辛烷磺酸销毁的一个重要障碍是缺乏对现实世界水域中水合电子过程的定量知识。该项目的目标是开发必要的量化数据和工具,通过解决水合电子基全氟烷烃降解的潜在机理限制,评估基于紫外线的高级还原过程(UV-ARP)的全部潜力。这一总体目标将通过重点关注三个相辅相成的目标来实现:i)表征母体全氟化铝的水合电子破坏效率和绝对氟化物产量,ii)开发所需的定量方法来预测真实水域中UV-Arps的全氟化铝降解率,以及iii)使用这些定量工具开发“最佳情况”的UV-ARP处理方法,并将该优化系统与其他全氟化铝降解技术进行比较。这些目标将使用最先进的时间分辨和稳态辐解,结合实验室规模的UV-ARP实验和动力学模型来实现。这项研究将通过高中STEM教师培训计划和在主要是本科院校的本科生研究人员参与,与教育和外展相结合。通过与奥兰治县水区的合作,分享水处理从业者的研究结果和建议,对社会产生了其他好处。奥兰治县水区是美国最大的全面高级水处理设施之一。这项研究的成功完成将推进ARP在真实世界水中处理PFAS的基础科学和工程潜力。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reactivity of Dissolved Organic Matter with the Hydrated Electron: Implications for Treatment of Chemical Contaminants in Water with Advanced Reduction Processes
  • DOI:
    10.1021/acs.est.3c00909
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    11.4
  • 作者:
    Benjamin D Fennell;Douglas Fowler;S. Mezyk;G. McKay
  • 通讯作者:
    Benjamin D Fennell;Douglas Fowler;S. Mezyk;G. McKay
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Mezyk其他文献

Stephen Mezyk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Mezyk', 18)}}的其他基金

Collaborative Research: CAS-MNP: Radical-induced Weathering of Micro- and Nanoplastics in Water: Impacts on Suspensions, Agglomerations, and Contaminant Adsorptions
合作研究:CAS-MNP:水中微米和纳米塑料的自由基诱导风化:对悬浮液、团聚和污染物吸附的影响
  • 批准号:
    2203935
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

基于非靶向代谢组学分析全氟多氟化合物(PFAS)诱导乳腺癌代谢紊乱和整合素ITGB信号通路障碍机制
  • 批准号:
    JCZRLH202500930
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
市政污泥腐殖化及土地利用过程微塑料和PFAS转化机制及环境风险研究
  • 批准号:
    JCZRQN202500332
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
污泥阴燃过程中PFAS降解行为与Ca/Fe驱 动的关联机制
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
典型环境健康风险因素防控技术应用研究-PFAS环境风险评估与绿色低碳治理技术
  • 批准号:
    2025C02214
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
污泥Fe系高级氧化深度脱水过程中PFAS转化调控机制
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
市政污泥高级氧化-骨架构建体预处理-热解联合工艺对短链PFAS的协同降解研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
饮用水膜处理系统服役中PFAS释放规律及去除机理研究
  • 批准号:
    52370137
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
污泥深度脱水中PFAS转化调控与EPS指纹的响应关联机制
  • 批准号:
    42307520
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
铁泥碳、硫缺陷调控构建内电场驱动催化体系修复地下水PFAS的界面作用机制
  • 批准号:
    42307065
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
去除水中新PFAS的高效选择性氟化-季铵COFs材料的构建及吸附机理研究
  • 批准号:
    22366033
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Collaborative Research: ERASE-PFAS: Hydrothermal Treatment as a Strategy for Simultaneous PFAS Destruction and Recovery of Energy and Nutrients from Wastewater Residual Solids
合作研究:ERASE-PFAS:水热处理作为同时破坏 PFAS 并从废水残留固体中回收能量和养分的策略
  • 批准号:
    2207191
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: ERASE-PFAS: Thermal Regeneration of PFAS-laden Granular Activated Carbon presents an Opportunity to Break the Forever PFAS Cycle
合作研究:ERASE-PFAS:充满 PFAS 的颗粒活性炭的热再生提供了打破永久 PFAS 循环的机会
  • 批准号:
    2219832
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: ERASE-PFAS: Stabilization of Per- and Polyfluorinated Substances in Sewage Sludge Intended for Land-application
合作研究:ERASE-PFAS:用于土地应用的污水污泥中全氟和多氟物质的稳定化
  • 批准号:
    2225596
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: ERASE-PFAS: Stabilization of Per- and Polyfluorinated Substances in Sewage Sludge Intended for Land-application
合作研究:ERASE-PFAS:用于土地应用的污水污泥中全氟和多氟物质的稳定化
  • 批准号:
    2225535
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: ERASE-PFAS: A "concentrate-and-destroy" technology for treating per- and polyfluoroalkyl substances using a new class of adsorptive photocatalysts
合作研究:ERASE-PFAS:一种使用新型吸附光催化剂处理全氟烷基和多氟烷基物质的“浓缩和破坏”技术
  • 批准号:
    2244985
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: ERASE-PFAS: Hydrothermal Treatment as a Strategy for Simultaneous PFAS Destruction and Recovery of Energy and Nutrients from Wastewater Residual Solids
合作研究:ERASE-PFAS:水热处理作为同时破坏 PFAS 并从废水残留固体中回收能量和养分的策略
  • 批准号:
    2207235
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: ERASE-PFAS: Stabilization of Per- and Polyfluorinated Substances in Sewage Sludge Intended for Land-application
合作研究:ERASE-PFAS:用于土地应用的污水污泥中全氟和多氟物质的稳定化
  • 批准号:
    2225750
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: ERASE-PFAS: Thermal Regeneration of PFAS-laden Granular Activated Carbon presents an Opportunity to Break the Forever PFAS Cycle
合作研究:ERASE-PFAS:充满 PFAS 的颗粒活性炭的热再生提供了打破永久 PFAS 循环的机会
  • 批准号:
    2219833
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: ERASE-PFAS: A "concentrate-and-destroy" technology for treating per- and polyfluoroalkyl substances using a new class of adsorptive photocatalysts
合作研究:ERASE-PFAS:一种使用新型吸附光催化剂处理全氟烷基和多氟烷基物质的“浓缩和破坏”技术
  • 批准号:
    2041059
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: ERASE-PFAS: Remediation of Per- and Polyfluoroalkyl Substances in Wastewater using Anaerobic Membrane Bioreactors
合作研究:ERASE-PFAS:利用厌氧膜生物反应器修复废水中的全氟烷基和多氟烷基物质
  • 批准号:
    2112201
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了