REU Site: Big Data Analytics at Oklahoma State University

REU 网站:俄克拉荷马州立大学大数据分析

基本信息

  • 批准号:
    2050978
  • 负责人:
  • 金额:
    $ 40.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-03-15 至 2024-02-29
  • 项目状态:
    已结题

项目摘要

The Research Experience for Undergraduates (REU) site on big data analytics at Oklahoma State University (OSU) is a ten-week summer program that seeks to recruit ten undergraduate students from colleges with limited research capabilities and high concentrations of underrepresented minority populations such as African Americans and Native Americans in Oklahoma and neighboring states. The participants will engage in research projects in big data analytics under faculty mentors' mentorship and guidance and allow students to participate in interdisciplinary research that crosses a variety of fields. The goals of the project include (1) providing a quality research experience for undergraduates, (2) increasing participation of female and under-represented minorities in computing fields (especially big data analytics), which will contribute to the broadening of diversity in computer science, (3) preparing students to pursue graduate studies in computing and data science fields, and building a community of big data analytic researchers. The participants will also be exposed to research activities in the industry through field trips and external speakers. This exposure will inform students' future choices about potential career paths within academia as well as within industrial settings. By the end of the program, the students should acquire skills that will lead to rewarding professional careers in science and technology, specifically in data science, expected to continue to be one of the most important fields of the future.This REU site aims to engage undergraduates in learning experiences that increase students` interest and ability to conduct primary research in computer science, especially big data analytics research. Students will learn how to develop and use different machine learning (e.g., neural networks), data mining (e.g., clustering), and statistical methods (e.g., regression), with applications to graph theory, text mining, image processing, and bioinformatics. They will be introduced to different aspects of big data analytics while working on real-world projects with different types of data, including network, health, and image data. They will develop efficient novel algorithms to analyze massive real-world social and information networks, to analyze the health data collected from electronic health records and to extract meaningful visual representations of unlabeled data for better visual understanding. Research topics range from using big data to characterize hate speech in social media to understand the COVID-19 spread. Students will contribute to cutting-edge research and often publish and present in top venues. The REU experience will expand the students' understanding of research by placing students in teams that include other undergraduate students and graduate students under the mentorship of the PIs and other faculty mentors. They will also learn about the ethical challenges inherent in big data analytics, from issues of privacy to problems emerging from machine learning applied to biased datasets. With weekly meetings and seminars, they will also learn about other projects, share their experience in their project with other students to form a cohort. The primary focus is to recruit female and underrepresented minorities, make UG students ready to pursue professional careers in research-oriented positions and contribute to the broadening of diversity in computer science.This project is jointly funded by Computer and Information Science and Engineering’s Information and Intelligent Systems division and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
俄克拉荷马州立大学(OSU)关于大数据分析的本科生研究经验(REU)网站是一个为期十周的暑期项目,旨在从研究能力有限、俄克拉荷马州及邻近州的非裔美国人和印第安人等少数族裔高度集中的大学招募10名本科生。参与者将在教师导师的指导和指导下从事大数据分析方面的研究项目,并允许学生参与跨多个领域的跨学科研究。该项目的目标包括:(1)为本科生提供高质量的研究体验;(2)增加女性和代表性不足的少数族裔在计算机领域(特别是大数据分析)的参与,这将有助于扩大计算机科学的多样性;(3)为学生在计算机和数据科学领域攻读研究生做好准备,并建立一个大数据分析研究人员社区。参与者还将通过实地考察和外部演讲来接触该行业的研究活动。这种接触将为学生未来在学术界和工业环境中选择潜在的职业道路提供信息。在课程结束时,学生们应该掌握一些技能,这些技能将导致在科学和技术领域的职业生涯,特别是在数据科学领域,预计将继续成为未来最重要的领域之一。这个REU网站旨在吸引本科生学习经验,提高学生在计算机科学,特别是大数据分析研究方面进行初级研究的兴趣和能力。学生将学习如何开发和使用不同的机器学习(如神经网络)、数据挖掘(如聚类)和统计方法(如回归),并将其应用于图论、文本挖掘、图像处理和生物信息学。他们将被介绍到大数据分析的不同方面,同时与不同类型的数据,包括网络,健康和图像数据的现实世界的项目工作。他们将开发高效的新算法来分析大量现实世界的社会和信息网络,分析从电子健康记录中收集的健康数据,并从未标记的数据中提取有意义的视觉表示,以便更好地进行视觉理解。研究主题包括利用大数据表征社交媒体中的仇恨言论,以及了解COVID-19的传播。学生将为前沿研究做出贡献,并经常在顶级场所发表和展示。REU的经历将扩大学生对研究的理解,将学生安排在包括其他本科生和研究生在内的团队中,在pi和其他教师导师的指导下。他们还将了解大数据分析中固有的道德挑战,从隐私问题到应用于有偏见数据集的机器学习出现的问题。通过每周的会议和研讨会,他们还将了解其他项目,与其他学生分享他们在项目中的经验,形成一个团队。该计划的主要目标是招收女性和少数族裔学生,让UG的学生为从事研究型职业做好准备,并为扩大计算机科学的多样性做出贡献。该项目由计算机和信息科学与工程信息和智能系统部门以及刺激竞争研究的既定计划(EPSCoR)共同资助。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Crick其他文献

Christopher Crick的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Crick', 18)}}的其他基金

REU Site: Big Data Analytics at Oklahoma State University
REU 网站:俄克拉荷马州立大学大数据分析
  • 批准号:
    1659645
  • 财政年份:
    2017
  • 资助金额:
    $ 40.28万
  • 项目类别:
    Standard Grant

相似国自然基金

新型WDR5蛋白Win site抑制剂的合理设计、合成及其抗肿瘤活性研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
具有共形结构的高性能Ta4SiTe4基有机/无机复合柔性热电薄膜
  • 批准号:
    52172255
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
基于重要农地保护LESA(Land Evaluation and Site Assessment)体系思想的高标准基本农田建设研究
  • 批准号:
    41340011
  • 批准年份:
    2013
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

REU Site: Online Interdisciplinary Big Data Analytics in Science and Engineering
REU 网站:科学与工程领域的在线跨学科大数据分析
  • 批准号:
    2348755
  • 财政年份:
    2024
  • 资助金额:
    $ 40.28万
  • 项目类别:
    Standard Grant
REU Site: Big Data Analytics
REU 网站:大数据分析
  • 批准号:
    2244152
  • 财政年份:
    2023
  • 资助金额:
    $ 40.28万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: BigDataX: From theory to practice in Big Data computing at eXtreme scales
合作研究:REU 网站:BigDataX:极限规模大数据计算从理论到实践
  • 批准号:
    2150500
  • 财政年份:
    2022
  • 资助金额:
    $ 40.28万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: BigDataX: From theory to practice in Big Data computing at eXtreme scales
合作研究:REU 网站:BigDataX:极限规模大数据计算从理论到实践
  • 批准号:
    2150501
  • 财政年份:
    2022
  • 资助金额:
    $ 40.28万
  • 项目类别:
    Standard Grant
REU Site: Research and Training Experience for Undergraduates in the Areas of Cybersecurity, Data Analytics and Blockchain for Securing Big Data and Cyber-Physical Systems
REU 网站:本科生在网络安全、数据分析和区块链领域的研究和培训经验,以保护大数据和网络物理系统
  • 批准号:
    2150210
  • 财政年份:
    2022
  • 资助金额:
    $ 40.28万
  • 项目类别:
    Standard Grant
REU Site: Undergraduate Research Experiences in Big Data Security and Privacy
REU 网站:大数据安全和隐私方面的本科生研究经验
  • 批准号:
    2050826
  • 财政年份:
    2021
  • 资助金额:
    $ 40.28万
  • 项目类别:
    Standard Grant
REU Site: Online Interdisciplinary Big Data Analytics in Science and Engineering
REU 网站:科学与工程领域的在线跨学科大数据分析
  • 批准号:
    2050943
  • 财政年份:
    2021
  • 资助金额:
    $ 40.28万
  • 项目类别:
    Standard Grant
REU Site: Research Experience for Undergraduates in Big Data Analytics and Machine Learning
REU 网站:大数据分析和机器学习本科生的研究经验
  • 批准号:
    2050175
  • 财政年份:
    2021
  • 资助金额:
    $ 40.28万
  • 项目类别:
    Standard Grant
REU Site: Scientific computing for structure in big or complex datasets
REU 站点:大型或复杂数据集中结构的科学计算
  • 批准号:
    1949972
  • 财政年份:
    2020
  • 资助金额:
    $ 40.28万
  • 项目类别:
    Standard Grant
REU Site: Big Data Science and Science Communication
REU 网站:大数据科学与科学传播
  • 批准号:
    1950024
  • 财政年份:
    2020
  • 资助金额:
    $ 40.28万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了