Bayesian Inference for Attribute Hierarchy in Cognitive Diagnosis Models
认知诊断模型中属性层次的贝叶斯推理
基本信息
- 批准号:2051198
- 负责人:
- 金额:$ 23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project will advance statistical methods for estimation and inference on attribute hierarchy within the framework of cognitive diagnosis models (CDM). CDMs have been widely applied to the field of educational assessment, psychiatric diagnosis, and other social sciences. In conjunction with diagnostic assessments, this type of model uses subjects' observed responses to specifically designed diagnostic items to determine the fine-grained classification of the underlying latent attribute patterns. Attribute hierarchy, or the relationship among attributes, plays an important role in designing an effective diagnostic assessment. However, there is a lack of efficient statistical tools for estimating attribute hierarchy from observed data. This project will develop a series of Bayesian approaches for estimating attribute hierarchy. The project will contribute to the newly developed interdisciplinary field that integrates artificial intelligence with psychometrics. The new methods will be useful for applied research in education and psychology, as well as other social science disciplines. The investigators will apply the new methods to educational data sets. Graduate students will participate in the conduct of this research, and publicly available software will be developed. This research project will develop Bayesian inference on attribute hierarchy for both static and dynamic CDM models and promote the use of CDMs in conjunction with attribute hierarchy to facilitate learning. The project will address major research questions on 1) the formulation of Bayesian framework for static and dynamic CDMs and 2) the development of methods to directly learn attribute hierarchy from the observed data in these two setups. For static CDMs, a series of new Bayesian estimation methods will be employed to directly estimate the attribute hierarchy and explicitly enforce the permissibility of attribute patterns. Stochastic processes and irreducible transitions will be created to ensure the convergence of the proposed algorithms. The project also will consider stochastic search variable selection methods to estimate the attribute hierarchy when the CDM satisfies conjunctive assumptions. The new methods for static CDMs will be extended to model and draw inferences on the process of learning in practice with the framework of dynamic CDMs. A set of simulation studies will be used to evaluate the new methods, and the methods will be applied to two spatial rotation learning datasets.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本研究将在认知诊断模型框架下,提出属性层次的估计和推断的统计方法。CDMs已被广泛应用于教育评估、精神病诊断和其他社会科学领域。结合诊断评估,这种类型的模型使用受试者对专门设计的诊断项目的观察反应来确定潜在潜在属性模式的细粒度分类。属性层次或属性之间的关系在设计有效的诊断评估中起着重要作用。然而,目前还缺乏有效的统计工具,估计属性层次结构从观察到的数据。本计画将发展一系列的贝氏方法来估计属性层级。该项目将有助于新开发的跨学科领域,将人工智能与心理测量学相结合。这些新方法将有助于教育学、心理学以及其他社会科学学科的应用研究。研究人员将把新方法应用于教育数据集。研究生将参与本研究的进行,并将开发公开可用的软件。本研究计划将为静态和动态CDM模型开发属性层次的贝叶斯推理,并促进CDM与属性层次的结合使用,以促进学习。该项目将解决以下主要研究问题:1)静态和动态CDM的贝叶斯框架的制定; 2)开发从这两种设置中的观测数据直接学习属性层次结构的方法。对于静态CDM,一系列新的贝叶斯估计方法将被用来直接估计属性层次结构,并显式地强制属性模式的允许性。随机过程和不可约转移将被创建,以确保所提出的算法的收敛性。当CDM满足合取假设时,本计画亦将考虑随机搜寻变数选择方法来估计属性层级。 静态CDMs的新方法将扩展到动态CDMs的框架下,对实践中的学习过程进行建模和推理。 一组模拟研究将被用来评估新的方法,该方法将被应用到两个空间旋转学习datasets.This奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yinghan Chen其他文献
Deep networks for few-shot manipulation learning from scratch
用于从零开始的小样本操作学习的深度网络
- DOI:
10.1016/j.robot.2025.105056 - 发表时间:
2025-11-01 - 期刊:
- 影响因子:5.200
- 作者:
Yinghan Chen;Xueyang Yao;Bryan Tripp - 通讯作者:
Bryan Tripp
Breast Cancer Knowledge and Mammography Use Among Asian American Women Aged 40 and Older: Using the Transtheoretical Model Approach
40 岁及以上亚裔美国女性的乳腺癌知识和乳房 X 光检查的使用:使用跨理论模型方法
- DOI:
10.1007/s10903-023-01529-7 - 发表时间:
2023 - 期刊:
- 影响因子:1.9
- 作者:
Wei‐Chen Tung;Yinghan Chen - 通讯作者:
Yinghan Chen
Improved Generalization of Probabilistic Movement Primitives for Manipulation Trajectories
改进操纵轨迹的概率运动原语的泛化
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:5.2
- 作者:
Xueyang Yao;Yinghan Chen;Bryan Tripp - 通讯作者:
Bryan Tripp
Differentiation, regulation and function of regulatory T cells in non-lymphoid tissues and tumors
非淋巴组织和肿瘤中调节性 T 细胞的分化、调节和功能
- DOI:
10.1016/j.intimp.2023.110429 - 发表时间:
2023-08-01 - 期刊:
- 影响因子:4.700
- 作者:
Hongbo Ni;Yinghan Chen - 通讯作者:
Yinghan Chen
Bayesian Inference for an Unknown Number of Attributes in Restricted Latent Class Models
受限潜在类模型中未知数量属性的贝叶斯推理
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:3
- 作者:
Yinghan Chen;S. Culpepper;Yuguo Chen - 通讯作者:
Yuguo Chen
Yinghan Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yinghan Chen', 18)}}的其他基金
Collaborative Research: Bayesian Estimation of Restricted Latent Class Models
合作研究:受限潜在类模型的贝叶斯估计
- 批准号:
1758688 - 财政年份:2018
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
相似海外基金
Spectral embedding methods and subsequent inference tasks on dynamic multiplex graphs
动态多路复用图上的谱嵌入方法和后续推理任务
- 批准号:
EP/Y002113/1 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Research Grant
CAREER: Game Theoretic Models for Robust Cyber-Physical Interactions: Inference and Design under Uncertainty
职业:稳健的网络物理交互的博弈论模型:不确定性下的推理和设计
- 批准号:
2336840 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
CAREER: Statistical foundations of particle tracking and trajectory inference
职业:粒子跟踪和轨迹推断的统计基础
- 批准号:
2339829 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Probabilistic Inference Based Utility Evaluation and Path Generation for Active Autonomous Exploration of USVs in Unknown Confined Marine Environments
基于概率推理的效用评估和路径生成,用于未知受限海洋环境中 USV 主动自主探索
- 批准号:
EP/Y000862/1 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Research Grant
CAREER: Efficient Large Language Model Inference Through Codesign: Adaptable Software Partitioning and FPGA-based Distributed Hardware
职业:通过协同设计进行高效的大型语言模型推理:适应性软件分区和基于 FPGA 的分布式硬件
- 批准号:
2339084 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
Designing Interaction Freedom via Active Inference
通过主动推理设计交互自由度
- 批准号:
EP/Y029178/1 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Research Grant
AI4PhotMod - Artificial Intelligence for parameter inference in Photosynthesis Models
AI4PhotMod - 用于光合作用模型中参数推断的人工智能
- 批准号:
BB/Y51388X/1 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Research Grant
STATISTICAL AND COMPUTATIONAL THRESHOLDS IN SPIN GLASSES AND GRAPH INFERENCE PROBLEMS
自旋玻璃和图推理问题的统计和计算阈值
- 批准号:
2347177 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
- 批准号:
2414688 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant