FRG: Collaborative Research: Derived Categories, Moduli Spaces, and Classical Algebraic Geometry

FRG:协作研究:派生范畴、模空间和经典代数几何

基本信息

  • 批准号:
    2052665
  • 负责人:
  • 金额:
    $ 26.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Algebraic geometry is the study of algebraic varieties, the geometric objects defined by systems of polynomial equations. A driving goal of the subject is the classification of algebraic varieties, involving questions like how to determine when one variety can be transformed into another using algebraic functions, or how to construct varieties with highly constrained geometric properties. Surprising connections have been found between these classical problems and modern tools in the subject, especially derived categories and their moduli spaces of objects. This project aims to further develop these tools in order to make progress on outstanding conjectures. Through conferences, workshops, and mentoring opportunities, the project will also train a new generation of mathematicians in this area. The project has three related research goals. The first is to use noncommutative resolutions of singularities to prove structural results about derived categories of coherent sheaves, motivated by conjectures of Bondal-Orlov and Kuznetsov relating these categories to birational geometry. The second goal is to construct Bridgeland stability conditions and study the geometry of their moduli spaces, both in general settings and cases of special interest. The third goal is to apply advances on the above topics to classical problems, like the classification of hyperkahler varieties and the rationality problem for cubic fourfolds.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
代数几何学是研究代数簇的学科,代数簇是由多项式方程组定义的几何对象。该主题的一个驱动目标是代数簇的分类,涉及如何确定何时可以使用代数函数将一个簇转换为另一个簇,或者如何构建具有高度约束几何属性的簇等问题。令人惊讶的联系已经发现这些经典问题和现代工具的主题,特别是派生类别和它们的模空间的对象。该项目旨在进一步开发这些工具,以便在尚未完成的任务方面取得进展。通过会议,研讨会和指导机会,该项目还将培养这一领域的新一代数学家。该项目有三个相关的研究目标。第一个是使用非交换的解决方案的奇点,以证明结构性的结果有关的衍生类别的相干层,激发了Astructures的Bondal-Orlov和库兹涅佐夫有关这些类别的双有理几何。第二个目标是构建Bridgeland稳定性条件,并研究其模空间的几何,无论是在一般情况下,特别感兴趣的情况下。第三个目标是将上述主题的进展应用于经典问题,如hyperkahler品种的分类和三次四倍的合理性问题。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A refined derived Torelli theorem for Enriques surfaces
Enriques 曲面的精化派生 Torelli 定理
  • DOI:
    10.1007/s00208-020-02113-2
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Li, Chunyi;Nuer, Howard;Stellari, Paolo;Zhao, Xiaolei
  • 通讯作者:
    Zhao, Xiaolei
Stability conditions and moduli spaces for Kuznetsov components of Gushel–Mukai varieties
  • DOI:
    10.2140/gt.2022.26.3055
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexander Perry;L. Pertusi;Xiaolei Zhao
  • 通讯作者:
    Alexander Perry;L. Pertusi;Xiaolei Zhao
Stability manifolds of varieties with finite Albanese morphisms
具有有限阿尔巴尼态射的簇的稳定性流形
A refined derived Torelli theorem for enriques surfaces, II: the non-generic case
恩里克斯曲面的精化导出托雷利定理,II:非泛型情况
  • DOI:
    10.1007/s00209-021-02930-4
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Li, Chunyi;Stellari, Paolo;Zhao, Xiaolei
  • 通讯作者:
    Zhao, Xiaolei
Elliptic quintics on cubic fourfolds, O'Grady 10, and Lagrangian fibrations
  • DOI:
    10.1016/j.aim.2022.108584
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Chunyi Li;L. Pertusi;Xiaolei Zhao
  • 通讯作者:
    Chunyi Li;L. Pertusi;Xiaolei Zhao
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaolei Zhao其他文献

A Level Set Method Using Fuzzy Logic and Region Information for Infant Brain MRI
使用模糊逻辑和区域信息的婴儿脑 MRI 水平集方法
Nonlinear effective permittivity of field grading composite dielectrics
场分级复合电介质的非线性有效介电常数
  • DOI:
    10.1088/1361-6463/aaa5c7
  • 发表时间:
    2018-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiao Yang;Xiaolei Zhao;Qi Li;Jun Hu;Jinliang He
  • 通讯作者:
    Jinliang He
Evolution of Nonmetallic Inclusions with Varied Argon Stirring Condition during Vacuum Degassing Refining of a Bearing Steel
轴承钢真空脱气精炼过程中不同氩气搅拌条件下非金属夹杂物的演变
  • DOI:
    10.1002/srin.202000364
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Gong Cheng;Lifang Zhang;Ying Ren;Wen Yang;Xiaolei Zhao;Guocheng Wang
  • 通讯作者:
    Guocheng Wang
Hippo-deficient cardiac fibroblasts differentiate into osteochondroprogenitors
Hippo缺陷型心脏成纤维细胞分化为骨软骨祖细胞
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chang;J. Kim;Xiao Li;P. Czarnewski;R. Li;Fansen Meng;Mingjie Zheng;Xiaolei Zhao;Jeffrey Steimle;Francisco Grisanti;Jun Wang;Md. Abul Hassan Samee;James F Martin
  • 通讯作者:
    James F Martin
Electric vehicle adoption and the energy rebound effect in the transportation sector: evidence from China
交通运输部门的电动汽车采用与能源回弹效应:来自中国的证据
  • DOI:
    10.1016/j.tranpol.2025.04.022
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    5.300
  • 作者:
    Xiaolei Zhao;Xuemei Li;Yumeng Mao;Jianjun Fang
  • 通讯作者:
    Jianjun Fang

Xiaolei Zhao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaolei Zhao', 18)}}的其他基金

Hyperkähler Geometry, Stability Conditions, and Moduli Spaces
Hyperkühler 几何、稳定性条件和模空间
  • 批准号:
    2101789
  • 财政年份:
    2021
  • 资助金额:
    $ 26.15万
  • 项目类别:
    Standard Grant

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 26.15万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 26.15万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 26.15万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 26.15万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 26.15万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 26.15万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 26.15万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 26.15万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 26.15万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 26.15万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了