FRG: Collaborative Research: Flexible Network Inference

FRG:协作研究:灵活的网络推理

基本信息

  • 批准号:
    2052964
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Scientists have been studying many natural systems by viewing them as networks, a term used to describe collections of entities and their interactions. Networks are ubiquitous in many fields, including epidemiology, economics, sociology, genomics and ecology, to name a few. A number of statistical models have emerged over the last two decades to describe network data. One common type of model is the latent space model, where each entity’s behavior is governed by its position in some unobserved (latent) space, and if we knew these positions, we could fully describe the statistical behavior of the network. While these models have been useful in many problems, real systems tend to be more complicated. The goal of this project is to fill this gap between models and reality by developing network analysis methods that still perform well even when the model does not fully match the data. The specific aims of this project are to improve our understanding of existing network analysis methods under model misspecification, heterogeneous noise, and incomplete or missing data, and to develop novel network methods that are robust to these sources of error. We consider both these problems under one unified framework that represents the adjacency matrix of a network as its expectation plus entry-wise noise, which encompasses most popular network models. Within this framework, the project will examine the effects of model misspecification on downstream inference, both for global inference tasks (e.g., network-level summary statistics) and local inference (e.g., node-level statistics). One core goal of the project is developing bootstrap and resampling algorithms for networks, two extremely useful tools in classical statistics that do not yet have full network analogues. Another core goal is developing more general notions of community membership and node similarity, allowing the extension of robust algorithms to a broader collection of network models. Finally, the methods developed will be extended to the analysis of multiple networks. Taken together, these tools will substantially expand the toolbox of network techniques, while accounting for the realities of noisy and incomplete network data and imperfect network models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
科学家们一直在通过将许多自然系统视为网络来研究它们,网络是一个用来描述实体集合及其相互作用的术语。网络在许多领域无处不在,包括流行病学、经济学、社会学、基因组学和生态学,仅举几例。在过去的二十年里,出现了许多描述网络数据的统计模型。一种常见的模型是潜在空间模型,其中每个实体的行为由它在某个未观察到的(潜在)空间中的位置控制,如果我们知道这些位置,我们可以完全描述网络的统计行为。虽然这些模型在许多问题上都很有用,但真正的系统往往更复杂。这个项目的目标是通过开发即使在模型与数据不完全匹配的情况下仍然表现良好的网络分析方法来填补模型和现实之间的差距。这个项目的具体目标是提高我们对模型错误指定、异质噪声和不完整或缺失数据下现有网络分析方法的理解,并开发对这些误差源具有健壮性的新网络方法。我们在一个统一的框架下考虑这两个问题,该框架将网络的邻接矩阵表示为期望加上入口级噪声,其中包含了最流行的网络模型。在这一框架内,该项目将审查模型错误指定对下游推理的影响,包括全局推理任务(例如,网络级汇总统计数据)和局部推理(例如,节点级统计数据)。该项目的一个核心目标是开发网络的自举和重采样算法,这是经典统计学中的两个极其有用的工具,目前还没有完全的网络模拟。另一个核心目标是开发社区成员和节点相似性的更一般概念,允许将健壮算法扩展到更广泛的网络模型集合。最后,将所开发的方法扩展到多个网络的分析。总而言之,这些工具将极大地扩展网络技术的工具箱,同时考虑到噪音和不完整的网络数据以及不完美的网络模型的现实。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SIMPLE: Statistical inference on membership profiles in large networks
简单:对大型网络中的成员资料进行统计推断
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yingying Fan其他文献

Human Vc9Vd2-T cells efficiently kill influenza virus-infected lung alveolar epithelial cells
人Vc9Vd2-T细胞有效杀死流感病毒感染的肺泡上皮细胞
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    24.1
  • 作者:
    Hong Li;Wenwei Tu;Zheng Xiang;Ting Feng;Jinrong Li;Yingying Fan;Qiao Lu;Zhongwei Yin;Meixing Yu1;Chongyang Shen
  • 通讯作者:
    Chongyang Shen
Effect of ,-Dimethylacrylshikonin on Inhibition of Human Colorectal Cancer Cell Growth in Vitro and in Vivo
效果
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yingying Fan;Shaoju Jin;Jun He;Zhenjun Shao;Jiao Yan;Ting Feng;Hong Li
  • 通讯作者:
    Hong Li
Asymptotic properties of high-dimensional random forests
高维随机森林的渐近性质
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Chien;Patrick Vossler;Yingying Fan;Jinchi Lv
  • 通讯作者:
    Jinchi Lv
Lipid composition and oxidative changes in diabetes and alcoholic diabetes rats
糖尿病和酒精糖尿病大鼠的脂质组成和氧化变化
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lin Qin;Shaik Althaf Hussain;N. Maddu;Chinna Padamala Manjuvani;Venkata Subba Reddy Gangireddygari;Yingying Fan
  • 通讯作者:
    Yingying Fan
Estimation of weak factor models
弱因子模型的估计
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yingying Fan;Jinchi Lv;Mahrad Sharifvaghefi;Yoshimasa Uematsu;Yoshimasa Uematsu;Yoshimasa Uematsu;植松良公;植松良公;植松良公;植松良公;Yoshimasa Uematsu;Yoshimasa Uematsu
  • 通讯作者:
    Yoshimasa Uematsu

Yingying Fan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yingying Fan', 18)}}的其他基金

High-Dimensional Random Forests Learning, Inference, and Beyond
高维随机森林学习、推理及其他
  • 批准号:
    2310981
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CAREER: High-Dimensional Variable Selection in Nonlinear Models and Classification with Correlated Data
职业:非线性模型中的高维变量选择以及相关数据的分类
  • 批准号:
    1150318
  • 财政年份:
    2012
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Regularization Methods in High Dimensions with Applications to Functional Data Analysis, Mixed Effects Models and Classification
高维正则化方法及其在函数数据分析、混合效应模型和分类中的应用
  • 批准号:
    0906784
  • 财政年份:
    2009
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了