Topological Dynamics and Countable Combinatorics

拓扑动力学和可数组合学

基本信息

  • 批准号:
    2054302
  • 负责人:
  • 金额:
    $ 12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Dynamics is the study of objects in motion. Here, an "object" is represented by a point in some mathematical structure, and "motion" is understood to mean a group of symmetries of this structure. By considering different mathematical structures, ideas from dynamics interact with several other areas of mathematics, in particular logic, group theory, and combinatorics. In turn, ideas from these fields give rise to new phenomena in dynamics. This project will focus on ideas coming from "countable combinatorics," broadly construed. Combinatorics is the study of discrete structures, as opposed to continuous ones, while the emphasis on "countable" combinatorics means that these discrete structures will be infinite, but still small enough that we can write down a list, or enumeration, of their elements. Much research in the past two decades has elucidated how pigeon-hole principles on countable structures can yield examples of groups with simple dynamics; here, the group of symmetries will be large, i.e. uncountable. On the other hand, attention has shifted recently to considering combinatorial arguments on countable groups themselves; these can be used to show that countable groups always have wild dynamics.The PI has two primary goals for this project. The first is to continue to develop the dictionary back and forth between combinatorial principles and dynamical properties of countable groups and more general Polish groups. In the case of countable groups, the existence of certain patterns on the group can lead to the construction of subshifts with interesting behavior, such as doubly minimal shifts or shifts disjoint from another given dynamical system. For more general Polish groups, Ramsey-like principles can be used to produce interesting spaces of ultrafilter-like objects on which the group can act. These dynamical systems will then have important universal properties, such as being universal for minimal flows, or being a universal "completion flow," a dynamical object previously defined and investigated by the PI. The second is to develop techniques to prove new theorems in countable combinatorics. Of particular interest are theorems asserting that various countable first-order structures have finite big Ramsey degrees. While the properties of interest are about countable objects, the techniques used can deal with extremely large objects, such as spaces of ultrafilters or forcing posets.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
动力学是研究运动中的物体的科学。在这里,“对象”是由某种数学结构中的一个点来表示的,而“运动”被理解为指这种结构的一组对称性。通过考虑不同的数学结构,来自动力学的思想与数学的其他几个领域相互作用,特别是逻辑、群论和组合学。反过来,来自这些领域的想法产生了动力学中的新现象。这个项目将专注于来自“可数组合学”的想法,广义上是这样解释的。组合学是研究离散的结构,而不是连续的结构,而强调“可数”的组合学意味着这些离散的结构将是无限的,但仍然足够小,我们可以写下它们的元素的列表或枚举。过去二十年的许多研究阐明了关于可数结构的鸽子洞原理如何产生具有简单动力学的群的例子;在这里,对称群将是大的,即不可数的。另一方面,最近人们的注意力转移到了关于可数群本身的组合论证上;这可以用来证明可数群总是具有狂野的动力。PI对这个项目有两个主要目标。第一个是继续发展可数群和更一般的波兰群的组合原理和动力学性质之间的词典。在可数群的情况下,群上某些模式的存在可以导致具有有趣行为的子移位的构造,例如双极小移位或与另一给定动力系统不相交的移位。对于更一般的波兰团体,类拉姆齐原理可以用来产生有趣的超滤器类物体空间,该团体可以对其采取行动。然后,这些动态系统将具有重要的通用属性,例如对于最小流是通用的,或者是通用的“完成流”,这是PI先前定义和研究的动态对象。第二是发展技术来证明可数组合学中的新定理。特别令人感兴趣的是断言各种可数一阶结构具有有限大Ramsey度的定理。虽然感兴趣的属性是关于可计数的对象,但所使用的技术可以处理极大的对象,如超滤器空间或强迫位置。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brandon Seward其他文献

Group Colorings and Bernoulli Subflows
组着色和伯努利子流
  • DOI:
    10.1090/memo/1141
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Su Gao;S. Jackson;Brandon Seward
  • 通讯作者:
    Brandon Seward
Bernoulli shifts with bases of equal entropy are isomorphic
等熵基的伯努利位移是同构的
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Brandon Seward
  • 通讯作者:
    Brandon Seward
Locally Nilpotent Groups and Hyperfinite Equivalence Relations
局部幂零群和超有限等价关系
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Schneider;Brandon Seward
  • 通讯作者:
    Brandon Seward
Cost, ℓ2-Betti numbers and the sofic entropy of some algebraic actions
成本、ℓ2-Betti 数和某些代数作用的 sofic 熵
  • DOI:
    10.1007/s11854-020-0072-0
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Gaboriau;Brandon Seward
  • 通讯作者:
    Brandon Seward
Krieger’s finite generator theorem for actions of countable groups I
  • DOI:
    10.1007/s00222-018-0826-9
  • 发表时间:
    2014-05
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Brandon Seward
  • 通讯作者:
    Brandon Seward

Brandon Seward的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brandon Seward', 18)}}的其他基金

Entropy Theory for Non-Amenable Groups
不服从群体的熵理论
  • 批准号:
    1955090
  • 财政年份:
    2020
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant

相似国自然基金

β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

PROTEMO: Emotional Dynamics Of Protective Policies In An Age Of Insecurity
PROTEMO:不安全时代保护政​​策的情绪动态
  • 批准号:
    10108433
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    EU-Funded
Domino - Computational Fluid Dynamics Modelling of Ink Droplet Breakup for Mitigating Mist Formation during inkjet printing
Domino - 墨滴破碎的计算流体动力学模型,用于减轻喷墨打印过程中的雾气形成
  • 批准号:
    10090067
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Collaborative R&D
Braiding Dynamics of Majorana Modes
马约拉纳模式的编织动力学
  • 批准号:
    DP240100168
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Projects
Next Generation Fluorescent Tools for Measuring Autophagy Dynamics in Cells
用于测量细胞自噬动态的下一代荧光工具
  • 批准号:
    DP240100465
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Projects
Fluid dynamics of underground hydrogen storage
地下储氢的流体动力学
  • 批准号:
    DE240100755
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Early Career Researcher Award
Predicting how the inducible defences of large mammals to human predation shape spatial food web dynamics
预测大型哺乳动物对人类捕食的诱导防御如何塑造空间食物网动态
  • 批准号:
    EP/Y03614X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Research Grant
Human enteric nervous system progenitor dynamics during development and disease
人类肠神经系统祖细胞在发育和疾病过程中的动态
  • 批准号:
    MR/Y013476/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Research Grant
Structure, Dynamics and Activity of Bacterial Secretosome
细菌分泌体的结构、动力学和活性
  • 批准号:
    BB/Y004531/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Research Grant
Shining light on single molecule dynamics: photon by photon
照亮单分子动力学:逐个光子
  • 批准号:
    EP/X031934/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Research Grant
New Ways Forward for Nonlinear Structural Dynamics
非线性结构动力学的新方法
  • 批准号:
    EP/X040852/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了