Model Theory, Quantum Complexity, and Embedding Problems in Operator Algebras

模型论、量子复杂性和算子代数中的嵌入问题

基本信息

  • 批准号:
    2054477
  • 负责人:
  • 金额:
    $ 38.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

This project lies at the intersection of three seemingly unrelated areas: von Neumann algebras, quantum complexity theory, and model theory. Von Neumann algebras were introduced by John von Neumann in his mathematical account of quantum mechanics and consist of infinite-sized matrices closed under various natural operations. Quantum complexity theory considers the difficulty of solving or verifying solutions to decision problems using the quantum model of computation, that is to say, computers that run according to the laws of quantum physics as opposed to classical physics. Recently, a landmark result in quantum complexity theory showed that classically unsolvable decision problems could be reliably verified by a quantum computer. This quantum complexity result established a negative solution to a famous problem in operator algebras, the so-called Connes Embedding Problem, posed in 1976, which asks whether or not every von Neumann algebra can be approximated by a simple von Neumann algebra known as the hyperfinite II_1 factor. Using techniques from model theory, a branch of mathematical logic that studies classes of structures by examining what is expressible about them using first-order logic, the PI and a collaborator greatly simplified and elucidated the connection between the quantum complexity result and the solution to the Connes Embedding Problem. This project plans to deepen the connection between these three areas by isolating the exact model-theoretic content behind the quantum complexity result and deducing further von Neumann algebraic consequences. More specifically, the PI plans on extending the model-theoretic analysis of the quantum complexity result to understand the complexity of the full first-order theory of the hyperfinite II_1 factor; the PI's work with Hart established this connection for the one-quantifier theory. In addition, the PI plans to pursue proofs of the failure of the Connes Embedding Problem which avoid the use of the quantum complexity result by using the model-theoretic notions of existentially closed models and Robinson forcing; due to the difficulty in proving the quantum complexity result, a new proof along these lines would serve as a great simplification of the resolution of the Connes Embedding Problem. The project will also study other uses of model theory in von Neumann algebra theory, including furthering progress on Popa's embedding problem, which asks about the existence of certain kinds of ergodic embeddings of II_1 factors into ultrapowers. The PI also plans on making progress on the C*-algebra version of the Connes Embedding Problem known as the Kirchberg Embedding Problem, which asks if every C*-algebra is approximated by the Cuntz algebra, an algebra of extreme importance in the classification program for nuclear C*-algebras. Finally, while the majority of the model-theoretic study of von Neumann algebras has focused on so-called finite algebras, the PI plans on studying the model-theoretic properties of arbitrary von Neumann algebras through the lens of W*-probability spaces.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目位于三个看似无关的领域的交叉点:冯诺依曼代数,量子复杂性理论和模型理论。 冯·诺依曼代数是由约翰·冯·诺依曼在他的量子力学的数学描述中引入的,由在各种自然运算下闭合的无限大小的矩阵组成。 量子复杂性理论考虑了使用量子计算模型解决或验证决策问题的解决方案的困难,也就是说,计算机根据量子物理学定律而不是经典物理学运行。 最近,量子复杂性理论的一个里程碑式的结果表明,经典的不可解决策问题可以通过量子计算机可靠地验证。 这个量子复杂性的结果为算子代数中的一个著名问题建立了一个负解,即所谓的康纳斯嵌入问题,该问题于1976年提出,它询问是否每个冯诺依曼代数都可以近似为一个简单的冯诺依曼代数,称为超有限II_1因子。 模型论是数学逻辑的一个分支,通过研究结构的类别,研究它们使用一阶逻辑的可表达性,PI和合作者极大地简化和阐明了量子复杂性结果与康纳斯嵌入问题解决方案之间的联系。 该项目计划通过隔离量子复杂性结果背后的确切模型理论内容并进一步推导冯诺依曼代数结果来加深这三个领域之间的联系。更具体地说,PI计划扩展量子复杂性结果的模型理论分析,以理解超有限II_1因子的完整一阶理论的复杂性; PI与哈特的工作为单量词理论建立了这种联系。 此外,PI计划通过使用存在闭模型和罗宾逊强迫的模型理论概念来避免使用量子复杂性结果来证明康纳斯嵌入问题的失败;由于证明量子复杂性结果的困难,沿着这些路线的新证明将大大简化康纳斯嵌入问题的解决方案。 该项目还将研究模型论在冯·诺依曼代数理论中的其他用途,包括进一步研究波帕嵌入问题,该问题询问II_1因子到超幂的某些遍历嵌入的存在性。 PI还计划在康纳斯嵌入问题的C*-代数版本上取得进展,称为基希贝格嵌入问题,该问题询问是否每个C*-代数都可以由Cuntz代数近似,Cuntz代数是核C*-代数分类程序中极其重要的代数。 最后,虽然大多数冯诺依曼代数的模型理论研究都集中在所谓的有限代数上,但PI计划通过W* 概率空间的透镜研究任意冯诺依曼代数的模型理论性质。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Terence Tao, Hilbert’s Fifth Problem and Related Topics. American Mathematical Society, Providence, 2014. 338 pp.
陶哲轩,希尔伯特第五个问题及相关主题。
The Connes embedding problem: A guided tour
Connes 嵌入问题:导览
Existentially closed W*-probability spaces
存在封闭的 W*-概率空间
  • DOI:
    10.1007/s00209-022-03038-z
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Goldbring, Isaac;Houdayer, Cyril
  • 通讯作者:
    Houdayer, Cyril
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Isaac Goldbring其他文献

Spectral gap and definability
光谱间隙和可定义性
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Isaac Goldbring
  • 通讯作者:
    Isaac Goldbring
Everettian Mechanics with Hyperfinitely Many Worlds
具有超有限多个世界的 Everettian 力学
COMPUTABILITY AND THE CONNES EMBEDDING PROBLEM
可计算性和 CONNES 嵌入问题
  • DOI:
    10.1017/bsl.2016.5
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Isaac Goldbring;B. Hart
  • 通讯作者:
    B. Hart
Existentially closed II₁ factors
存在闭 II₁ 因子
  • DOI:
    10.4064/fm126-12-2015
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    I. Farah;Isaac Goldbring;B. Hart;David Sherman
  • 通讯作者:
    David Sherman
Pseudofinite and Pseudocompact Metric Structures
伪有限和伪紧度量结构
  • DOI:
    10.1215/00294527-3132833
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Isaac Goldbring;Vinicius Cifú Lopes
  • 通讯作者:
    Vinicius Cifú Lopes

Isaac Goldbring的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Isaac Goldbring', 18)}}的其他基金

CAREER: Model Theory and Operator Algebras
职业:模型理论和算子代数
  • 批准号:
    1708802
  • 财政年份:
    2016
  • 资助金额:
    $ 38.98万
  • 项目类别:
    Continuing Grant
CAREER: Model Theory and Operator Algebras
职业:模型理论和算子代数
  • 批准号:
    1349399
  • 财政年份:
    2014
  • 资助金额:
    $ 38.98万
  • 项目类别:
    Continuing Grant
Model Theory and Analysis
模型理论与分析
  • 批准号:
    1262210
  • 财政年份:
    2012
  • 资助金额:
    $ 38.98万
  • 项目类别:
    Standard Grant
Model Theory and Analysis
模型理论与分析
  • 批准号:
    1101316
  • 财政年份:
    2011
  • 资助金额:
    $ 38.98万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Quantum Finite Model Theory
量子有限模型理论
  • 批准号:
    2426740
  • 财政年份:
    2020
  • 资助金额:
    $ 38.98万
  • 项目类别:
    Studentship
Do matrix model and AdS/CFT correctly capture quantum properties of membranes in M-theory?
矩阵模型和 AdS/CFT 能否正确捕捉 M 理论中膜的量子特性?
  • 批准号:
    20K03955
  • 财政年份:
    2020
  • 资助金额:
    $ 38.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Applications of Number Theory to the Quantum Gates Model
数论在量子门模型中的应用
  • 批准号:
    2015305
  • 财政年份:
    2019
  • 资助金额:
    $ 38.98万
  • 项目类别:
    Standard Grant
Applications of Number Theory to the Quantum Gates Model
数论在量子门模型中的应用
  • 批准号:
    1902185
  • 财政年份:
    2019
  • 资助金额:
    $ 38.98万
  • 项目类别:
    Standard Grant
Theory of complex molecular systems: effective model and quantum dynamics
复杂分子系统理论:有效模型和量子动力学
  • 批准号:
    19K21860
  • 财政年份:
    2019
  • 资助金额:
    $ 38.98万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Computational Quantum Field Theory, Dark Matter and Beyond the Standard Model Physics
计算量子场论、暗物质和超越标准模型物理
  • 批准号:
    1810964
  • 财政年份:
    2016
  • 资助金额:
    $ 38.98万
  • 项目类别:
    Studentship
Model reduction of open markov quantum systems: theory and algorithms
开放马尔可夫量子系统的模型简化:理论与算法
  • 批准号:
    DP130104191
  • 财政年份:
    2013
  • 资助金额:
    $ 38.98万
  • 项目类别:
    Discovery Projects
A Random Channel Model of the Additivity Problem in Quantum Information Theory
量子信息论中可加性问题的随机信道模型
  • 批准号:
    391646-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 38.98万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
A Random Channel Model of the Additivity Problem in Quantum Information Theory
量子信息论中可加性问题的随机信道模型
  • 批准号:
    391646-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 38.98万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
A Random Channel Model of the Additivity Problem in Quantum Information Theory
量子信息论中可加性问题的随机信道模型
  • 批准号:
    391646-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 38.98万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了