Dynamical Methods in Counting Questions and Diophantine Approximation
计数问题的动力学方法和丢番图近似
基本信息
- 批准号:2055364
- 负责人:
- 金额:$ 14.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2022-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Dynamical systems model such varied examples as planetary motion, spread of disease and the flow of electric currents in conductive material. The area of mathematical dynamical systems consists of the study of the evolution over time of a system under a transformation rule that governs the behavior of the system. Methods from the study of dynamical systems, when applied to systems of algebraic origin and admitting a lot of symmetries, shed light, perhaps strikingly, on some of the oldest and most well-studied questions in mathematics, namely solutions in whole numbers, or integers, of polynomial equations, and approximations of arbitrary real numbers by fractions. In turn, developments in number theory, driven by dynamical methods, have had interesting and surprising applications, reaching recently as far as impacting wireless communication technologies. This project aims to deepen these fruitful connections between dynamics and number theory by, in particular, developing new methods for counting the number of integer solutions to certain types of highly symmetric polynomial equations. An important component of this project is geared towards training graduate students in this area, at the intersection of dynamical systems and number theory, through research and professional mentoring. The goal of this project is fourfold: 1) develop methods in homogeneous dynamics to resolve outstanding questions regarding the distribution of rational points near manifolds and self-similar sets; 2) develop techniques in the theory of random walks and linear representations of algebraic groups aimed at studying counting problems of integral points on affine homogeneous varieties; 3) develop spectral tools for the study of the dynamics of the Kontsevich-Zorich cocycle over the Teichmueller geodesic flow, along with applications to rigidity problems for horocycle flows on moduli spaces of Abelian differentials; 4) develop new methods for the study of the mixing properties of the geodesic flow on infinite volume locally symmetric spaces of negative curvature.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
动力系统对行星运动、疾病传播和导电材料中的电流流动等各种例子进行建模。数学动力系统领域包括在控制系统行为的变换规则下研究系统随时间的演化。动力系统研究的方法,当应用于代数起源的系统并承认大量对称性时,也许会令人惊讶地揭示数学中一些最古老和研究最深入的问题,即多项式方程的整数或整数的解,以及任意实数的分数逼近。反过来,由动力学方法驱动的数论的发展也产生了有趣且令人惊讶的应用,最近甚至对无线通信技术产生了影响。该项目旨在加深动力学和数论之间的富有成效的联系,特别是开发计算某些类型的高度对称多项式方程的整数解的数量的新方法。该项目的一个重要组成部分是通过研究和专业指导,在动力系统和数论的交叉领域培训研究生。 该项目的目标有四个:1)开发齐次动力学方法来解决有关流形和自相似集附近有理点分布的突出问题; 2)开发随机游走和代数群线性表示理论的技术,旨在研究仿射齐次簇上积分点的计数问题; 3) 开发谱工具,用于研究 Teichmueller 测地流上 Kontsevich-Zorich 余循环的动力学,以及在阿贝尔微分模空间上的 horocycle 流刚性问题的应用; 4) 开发研究无限体积负曲率局部对称空间上测地流混合特性的新方法。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Osama Khalil其他文献
Synthetic training in object detection
目标检测中的综合训练
- DOI:
10.1109/icip.2013.6738641 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Osama Khalil;Mohammed E. Fathy;D. Kholy;M. El;Pushmeet Kohli;J. Shotton;Yasmine Badr - 通讯作者:
Yasmine Badr
Viewpoint Invariant Object Detector
视点不变目标检测器
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Osama Khalil;Andrew Habib - 通讯作者:
Andrew Habib
Brachial plexopathy and intradural cord compression caused by malignant peripheral nerve sheath tumor a case report and literature review
- DOI:
10.1016/j.ijscr.2024.110610 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:
- 作者:
Ahmad Alelaumi;Almu'Atasim Khamees;Mohammad Alfawareh;Osama Khalil;Anas Zahran - 通讯作者:
Anas Zahran
Impact of Corn and Goat's Milk on Labneh Characteristics
玉米和羊奶对拉布尼特性的影响
- DOI:
10.21608/ajas.2023.226276.1283 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Osama Khalil - 通讯作者:
Osama Khalil
Isothermes Kurzzeitermüdungsverhalten der hoch-warmfesten Aluminium-Knetlegierung 2618A (AlCu2Mg1,5Ni)
- DOI:
10.5445/ksp/1000040485 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Osama Khalil - 通讯作者:
Osama Khalil
Osama Khalil的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Osama Khalil', 18)}}的其他基金
CAREER: Mixing and Equidistribution in Number Theory and Geometry
职业:数论和几何中的混合和均匀分布
- 批准号:
2337911 - 财政年份:2024
- 资助金额:
$ 14.37万 - 项目类别:
Continuing Grant
Dynamical Methods in Counting Questions and Diophantine Approximation
计数问题的动力学方法和丢番图近似
- 批准号:
2247713 - 财政年份:2022
- 资助金额:
$ 14.37万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: New methods in curve counting
职业:曲线计数的新方法
- 批准号:
2422291 - 财政年份:2024
- 资助金额:
$ 14.37万 - 项目类别:
Continuing Grant
CAREER: New methods in curve counting
职业:曲线计数的新方法
- 批准号:
2239320 - 财政年份:2023
- 资助金额:
$ 14.37万 - 项目类别:
Continuing Grant
Dynamical Methods in Counting Questions and Diophantine Approximation
计数问题的动力学方法和丢番图近似
- 批准号:
2247713 - 财政年份:2022
- 资助金额:
$ 14.37万 - 项目类别:
Standard Grant
Short Trainings on Methods for Recruiting, Sampling, and Counting Hard-to-Reach Populations: The H2R Training Program
关于难以接触人群的招募、抽样和计数方法的短期培训:H2R 培训计划
- 批准号:
10418422 - 财政年份:2022
- 资助金额:
$ 14.37万 - 项目类别:
Short Trainings on Methods for Recruiting, Sampling, and Counting Hard-to-Reach Populations: The H2R Training Program
关于难以接触人群的招募、抽样和计数方法的短期培训:H2R 培训计划
- 批准号:
10674757 - 财政年份:2022
- 资助金额:
$ 14.37万 - 项目类别:
Re-counting crime: New methods to improve the accuracy of estimates of crime
重新统计犯罪:提高犯罪估计准确性的新方法
- 批准号:
ES/T015667/1 - 财政年份:2021
- 资助金额:
$ 14.37万 - 项目类别:
Research Grant
Data Fusion Approaches for Analysing Many Spatial Outcomes Jointly - Semiparametric Mixture Methods for Correlated Counting Processes and Joint Outcome Analyses
用于联合分析许多空间结果的数据融合方法 - 用于相关计数过程和联合结果分析的半参数混合方法
- 批准号:
RGPIN-2014-06187 - 财政年份:2019
- 资助金额:
$ 14.37万 - 项目类别:
Discovery Grants Program - Individual
Data Fusion Approaches for Analysing Many Spatial Outcomes Jointly - Semiparametric Mixture Methods for Correlated Counting Processes and Joint Outcome Analyses
用于联合分析许多空间结果的数据融合方法 - 用于相关计数过程和联合结果分析的半参数混合方法
- 批准号:
RGPIN-2014-06187 - 财政年份:2017
- 资助金额:
$ 14.37万 - 项目类别:
Discovery Grants Program - Individual
Data Fusion Approaches for Analysing Many Spatial Outcomes Jointly - Semiparametric Mixture Methods for Correlated Counting Processes and Joint Outcome Analyses
用于联合分析许多空间结果的数据融合方法 - 用于相关计数过程和联合结果分析的半参数混合方法
- 批准号:
RGPIN-2014-06187 - 财政年份:2016
- 资助金额:
$ 14.37万 - 项目类别:
Discovery Grants Program - Individual
Advanced development and validation of targeted molecular counting methods for precise and ultrasensitive quantitation of low prevalence somatic mutations
先进的开发和验证靶向分子计数方法,用于低流行体细胞突变的精确和超灵敏定量
- 批准号:
9269176 - 财政年份:2015
- 资助金额:
$ 14.37万 - 项目类别:














{{item.name}}会员




