RAISE: Spring & Wings: Resonance in insect and engineered flight with synchronous and stretch-activated actuation
提高:春季
基本信息
- 批准号:2100858
- 负责人:
- 金额:$ 99.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Research Advanced by Interdisciplinary Science and Engineering (RAISE) project will develop a dynamical model to enhance understanding of insect flight as an integrated system and apply this information to robotic design. Flight at the size of insects is very energetically challenging. Nonetheless, the evolution of flight spurred much of the evolutionary diversity of insects we see today. Insects fly long distances, maneuver in crowded and gusty environments, and overcome the energetic limitations of flapping wing flight in ways that cannot yet be matched in human-engineered systems. Insects couple springy exoskeletons to their wings to help store and return energy on every flap; however, to maximize energy return, insects would have to beat their wings at a steady rate. This project will explore how insects couple springs and wings together to manage energy requirements and flight control under a range of conditions. This project will also explore how the two distinct types of muscle contraction that insects use to power flight could both be achieved with the same underlying mechanics and muscle properties, enabling a mathematical framework for understanding how insects achieve such different types of flight. The project will use robophysical models with springy exoskeletons coupled to wings and insect-scale flapping robots to establish a general “spring-wing” framework. Research at both collaborating institutions will include an immersive, vertically integrated undergraduate research program. Student teams will receive mentorship and on-site research experience during the school year and will travel to their exchange location for interdisciplinary summer research. At least two graduate students and a post-doctoral fellow will also receive cross-disciplinary training.Insect-scale flapping-wing flight demands both high-power actuation and low-latency control. To mitigate flight power requirements, most insects actuate their wings indirectly via muscles that deform a stiff, elastic exoskeleton. Coupling elastic elements to the wings allows insects potentially to operate as a resonant system, which would reduce power costs but also would introduce control constraints, such as limiting wingbeat frequency modulation. To power flapping flight, insects evolved two distinct actuation strategies: synchronous flight, with time-periodic forcing of antagonistic muscles paced by the nervous system, and asynchronous flight, in which muscles set up self-excited oscillations due to strain-dependent activation. The project will establish an analytic framework for spring-wing systems, test if insects operate at their hypothesized resonant frequencies, and develop a dynamically scaled robophysical spring-wing flapper to explore how a single non-dimensional parameter, the Weis-Fogh number, influences elastic energy storage and aerodynamic force control. The two muscle actuation strategies will then be combined, testing if synchronous flying insects that have evolved from asynchronous insects retain the necessary physiological signatures of self-excited (asynchronous) oscillations. A single dynamic system that can transition from the two regimes of stable flapping will be tested in the robophysical system and in an at-scale, bio-inspired flapping wing robot. Finally, the tradeoffs of operating at or away from resonance in spring-wing systems will be investigated. The project bridges the biological and physical sciences, will expand understanding of physiological and biomechanical principles and trade-offs involved in flight, and should transform the current understanding of insect flight, with applications to robotics. Undergraduate and graduate students and a post-doctoral fellow will participate in mentored, interdisciplinary research teams, and will present research results at national scientific meetings. Research results will also be disseminated through a bio-inspired design workshop. This award is co-funded by the Dynamics, Control and Systems Diagnostics Program in the Division of Civil, Mechanical and Manufacturing Innovation, Directorate for Engineering, and the Physiological Mechanisms and Biomechanics Program in the Division of Integrative Organismal Systems, Directorate for Biological Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项由跨学科科学与工程(RAISE)推动的研究项目将开发一个动力学模型,以增强对昆虫飞行作为一个综合系统的理解,并将这些信息应用于机器人设计。昆虫大小的飞行是非常具有挑战性的。尽管如此,飞行的进化刺激了我们今天看到的昆虫的进化多样性。昆虫可以长距离飞行,在拥挤和阵风的环境中机动,并以人类工程系统无法比拟的方式克服拍打翅膀飞行的能量限制。昆虫将有弹性的外骨骼连接到翅膀上,以帮助存储和返回每一片翅膀上的能量;然而,为了最大限度地获得能量回报,昆虫必须以稳定的速度拍打翅膀。这个项目将探索昆虫如何将弹簧和翅膀结合在一起,以在一系列条件下管理能量需求和飞行控制。该项目还将探索昆虫用来推动飞行的两种不同类型的肌肉收缩如何以相同的基本力学和肌肉特性实现,从而为理解昆虫如何实现这种不同类型的飞行提供一个数学框架。该项目将使用机器人物理模型,将弹性外骨骼连接到翅膀和昆虫规模的拍打机器人,以建立一个通用的“弹簧-翅膀”框架。这两个合作机构的研究将包括一个身临其境的、垂直整合的本科生研究项目。学生团队将在学年期间接受指导和现场研究经验,并将前往他们的交流地点进行跨学科的暑期研究。至少两名研究生和一名博士后也将接受跨学科培训。整体规模的扑翼飞行需要高功率驱动和低延迟控制。为了减少飞行能量需求,大多数昆虫通过肌肉间接驱动它们的翅膀,这些肌肉使僵硬、有弹性的外骨骼变形。将弹性元件耦合到翅膀上,使昆虫有可能作为一个共振系统运行,这将降低电力成本,但也会引入控制限制,例如限制翼拍频率调制。为了给扑翼飞行提供动力,昆虫进化出了两种不同的驱动策略:同步飞行和异步飞行,同步飞行通过神经系统控制对抗肌肉的时间周期,而异步飞行肌肉由于依赖于应变的激活而建立自激振荡。该项目将为弹簧-翅膀系统建立一个分析框架,测试昆虫是否以其假设的共振频率工作,并开发一种动态缩放的弹簧-翅膀拍子,以探索单个无量纲参数--Weis-Fogh数--如何影响弹性能量储存和气动力控制。然后,这两种肌肉驱动策略将被结合起来,测试从异步昆虫进化而来的同步飞行昆虫是否保留了自激(异步)振荡的必要生理特征。可以从两种稳定扑翼状态转换的单一动力系统将在机器人物理系统和大规模仿生扑翼机器人中进行测试。最后,将研究在弹簧-机翼系统中工作在共振状态或远离共振状态时的权衡。该项目连接了生物科学和物理科学,将扩大对飞行中涉及的生理和生物力学原理和权衡的理解,并将改变目前对昆虫飞行的理解,将其应用于机器人学。本科生和研究生以及一名博士后将参加有指导的跨学科研究团队,并将在国家科学会议上展示研究成果。研究成果还将通过仿生设计研讨会进行传播。该奖项由工程局土木、机械和制造创新部的动力学、控制和系统诊断计划以及生物科学局综合组织系统司的生理机制和生物力学计划共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Autonomous Actuation of Flapping Wing Robots Inspired by Asynchronous Insect Muscle
受异步昆虫肌肉启发的扑翼机器人自主驱动
- DOI:10.1109/icra46639.2022.9812028
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Lynch, James;Gau, Jeff;Sponberg, Simon;Gravish, Nick
- 通讯作者:Gravish, Nick
The hawkmoth wingbeat is not at resonance
- DOI:10.1098/rsbl.2022.0063
- 发表时间:2022-05-25
- 期刊:
- 影响因子:3.3
- 作者:Gau, Jeff;Wold, Ethan S.;Sponberg, Simon
- 通讯作者:Sponberg, Simon
Structural damping renders the hawkmoth exoskeleton mechanically insensitive to non-sinusoidal deformations
结构阻尼使鹰蛾外骨骼对非正弦变形机械不敏感
- DOI:10.1098/rsif.2023.0141
- 发表时间:2023
- 期刊:
- 影响因子:3.9
- 作者:Wold, Ethan S.;Lynch, James;Gravish, Nick;Sponberg, Simon
- 通讯作者:Sponberg, Simon
A compliant thorax design for robustness and elastic energy exchange in flapping-wing robots
- DOI:10.1109/iros47612.2022.9981927
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:H. Gao;James Lynch;N. Gravish
- 通讯作者:H. Gao;James Lynch;N. Gravish
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Simon Sponberg其他文献
X-Ray Diffraction Resolves How Actin-Myosin Spacing Explains the Differences of Two Muscles with Identical Steady State Properties
- DOI:
10.1016/j.bpj.2018.11.2179 - 发表时间:
2019-02-15 - 期刊:
- 影响因子:
- 作者:
Travis Tune;Thomas Irving;Simon Sponberg - 通讯作者:
Simon Sponberg
Nanometer scale difference in myofilament lattice structure of muscle alter muscle function in a spatially explicit model
肌肉肌丝晶格结构的纳米尺度差异在空间显式模型中改变肌肉功能
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
T. Tune;Simon Sponberg - 通讯作者:
Simon Sponberg
Simon Sponberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Simon Sponberg', 18)}}的其他基金
CAREER: A Framework for Revealing How Locomotor Control Emerges from the reciprocal Interactions of Neural and Mechanical Systems
职业:揭示神经系统和机械系统相互作用如何产生运动控制的框架
- 批准号:
1554790 - 财政年份:2016
- 资助金额:
$ 99.98万 - 项目类别:
Continuing Grant
Postdoctoral Research Fellowships in Biology for FY 2009
2009财年生物学博士后研究奖学金
- 批准号:
0905944 - 财政年份:2010
- 资助金额:
$ 99.98万 - 项目类别:
Fellowship
相似国自然基金
NBS-LRR来源小肽SPRING调控水稻开花时间的分子机制
- 批准号:32300454
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
野生番茄SpRing 3'UTR顺式元件及互作RNA结合蛋白的鉴定与功能验证
- 批准号:31701926
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Conference: 57th Spring Topology and Dynamical Systems Conference
会议:第57届春季拓扑与动力系统会议
- 批准号:
2348830 - 财政年份:2024
- 资助金额:
$ 99.98万 - 项目类别:
Standard Grant
Conference: Polymeric Materials: Science and Engineering Division Centennial Celebration at the Spring 2024 American Chemical Society Meeting
会议:高分子材料:美国化学会 2024 年春季会议科学与工程部百年庆典
- 批准号:
2415569 - 财政年份:2024
- 资助金额:
$ 99.98万 - 项目类别:
Standard Grant
Conference on Science and Law of Sea Level Rise: Reducing Legal Obstacles to Managing Rising Seas; Fort Lauderdale, Florida; Spring 2024
海平面上升科学与法律会议:减少管理海平面上升的法律障碍;
- 批准号:
2330829 - 财政年份:2024
- 资助金额:
$ 99.98万 - 项目类别:
Standard Grant
CIHR III Spring 2024 New Investigator Forum
CIHR III 2024 年春季新研究者论坛
- 批准号:
492599 - 财政年份:2023
- 资助金额:
$ 99.98万 - 项目类别:
Investigation of Quantum Noise Reduction Method using Quantum Locking with Optical Spring for Space Gravitational Wave Detector DECIGO
空间引力波探测器DECIGO光学弹簧量子锁定量子降噪方法研究
- 批准号:
23KJ1121 - 财政年份:2023
- 资助金额:
$ 99.98万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Collaborative Research: RAPID: Fault rock and spring sampling of the 2023 Kahramanmaras, Turkey, earthquake sequence ruptures
合作研究:RAPID:2023 年土耳其卡赫拉曼马拉斯地震序列破裂的断层岩和泉水采样
- 批准号:
2335077 - 财政年份:2023
- 资助金额:
$ 99.98万 - 项目类别:
Standard Grant
Spring 2024 CIHR-III New Investigator Forum "Connecting and Advancing: Dr. Umeshappa's Elevator Pitch"
2024 年春季 CIHR-III 新研究者论坛“连接与进步:Umeshappa 博士的电梯演讲”
- 批准号:
495261 - 财政年份:2023
- 资助金额:
$ 99.98万 - 项目类别:
Spring 2024 CIHR-III New Investigator Forum
2024 年春季 CIHR-III 新研究者论坛
- 批准号:
492664 - 财政年份:2023
- 资助金额:
$ 99.98万 - 项目类别:
Explosive Astrophysics from Siding Spring Observatory
赛丁斯普林天文台的爆炸天体物理学
- 批准号:
LE230100063 - 财政年份:2023
- 资助金额:
$ 99.98万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Analysis of Resilience Factors in Hot Spring Tourism Sites for a Management Model Derivation
温泉旅游地韧性因素分析及管理模型推导
- 批准号:
23H03646 - 财政年份:2023
- 资助金额:
$ 99.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)