Understanding and Engineering the Nucleation of Enzyme Metal-Organic Frameworks
理解和设计酶金属有机框架的成核
基本信息
- 批准号:2102033
- 负责人:
- 金额:$ 33.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Enzymes are natural catalysts that can be used by chemical industries to speed up the rate of reactions and reduce the energy requirements of catalytic processes. However, enzymes are not typically stable outside of the physiological environment in which they evolved, significantly limiting their utility for industrial applications. A potential solution to this problem is to immobilize enzymes onto support structures. The ideal support material must be capable of loading high quantities of the active form of the enzyme. The support should also increase the stability and recyclability of the enzyme compared to the free enzyme in solution. Metal-organic frameworks (MOFs) are a promising class of materials for enzyme immobilization. MOFs are porous crystalline materials formed by the self-assembly of metal ions and organic ligands. Enzymes can be immobilized on MOFs by simply mixing the metal, ligand, and enzyme in aqueous solutions at room temperature. The enzymes are then incorporated into the MOF framework during the nucleation and growth processes. Understanding how this process works requires a detailed analysis of the system's nucleation and growth mechanisms. This fundamental mechanistic knowledge will provide robust design rules for the synthesis of enzyme-immobilized MOFs with high loading of the active form of the enzyme. The ability to immobilize practically any enzyme at the MOF surface has the potential to revolutionize the biotechnology industry and benefit society through lower energy chemical processes. The investigator will also develop a mobile K-12 outreach activity that uses low-cost microscopy to observe salt crystal growth. This project aims to determine the nucleation and growth mechanisms of enzyme MOF composite materials. The approach employs cryogenic and liquid-phase electron microscopy. Cryogenic electron microscopy will be used to trap intermediates and analyze their high-resolution structure. Liquid-phase electron microscopy will be used to monitor the kinetics of absorption, nucleation, and growth. The electron microscopy data will be supported by bulk scattering analysis using light and X-rays. The knowledge gained from these mechanistic studies will be used to re-engineer the interfacial chemistry to improve both encapsulation efficiency and enzymatic activity. The project will reveal the formation mechanisms, how the mechanisms can be manipulated by tuning the interfacial chemistry, and the structure-property relationships.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
酶是天然催化剂,化学工业可以使用,以加快反应速度并降低催化过程的能量需求。但是,在它们进化的生理环境之外,酶通常并不是稳定的,从而大大限制了其用于工业应用的效用。解决此问题的潜在解决方案是将酶固定在支撑结构上。理想的支撑材料必须能够加载大量酶的活性形式。与溶液中的游离酶相比,支持还应提高酶的稳定性和可回收性。金属有机框架(MOF)是固定酶的有前途的材料类别。 MOF是由金属离子和有机配体的自组装形成的多孔晶体材料。可以通过在室温下将金属,配体和酶混合在水溶液中,将酶固定在MOF上。然后在成核和生长过程中将酶掺入MOF框架中。了解该过程的工作原理需要对系统的成核和生长机制进行详细分析。这种基本的机械知识将为合成酶的酶 - 弹性MOF的合成提供强大的设计规则,并具有高负载的酶的活性形式。 MOF表面实际上固定任何酶的能力有可能通过较低的能源化学过程彻底改变生物技术行业并使社会受益。研究人员还将开发一种移动的K-12外展活动,该活动使用低成本显微镜观察盐晶体的生长。该项目旨在确定酶MOF复合材料的成核和生长机制。该方法采用低温和液相电子显微镜。低温电子显微镜将用于捕获中间体并分析其高分辨率结构。液相电子显微镜将用于监测吸收,成核和生长的动力学。电子显微镜数据将通过使用光和X射线的散装散射分析来支持。从这些机械研究中获得的知识将用于重新设计界面化学,以提高封装效率和酶活性。该项目将揭示形成机制,如何通过调整界面化学来操纵机制以及结构性关系的关系。该奖项反映了NSF的法定任务,并被认为值得通过基金会的知识分子优点和更广泛的影响审查标准通过评估来进行评估。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joe Patterson其他文献
Joe Patterson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joe Patterson', 18)}}的其他基金
CAREER: Ring-Opening Polymerization-Induced Crystallization-Driven Self-Assembly
职业:开环聚合诱导结晶驱动的自组装
- 批准号:
2238834 - 财政年份:2023
- 资助金额:
$ 33.92万 - 项目类别:
Continuing Grant
相似国自然基金
界面离子工程调控钙钛矿异质成核结晶实现高效稳定柔性光伏组件
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:
界面离子工程调控钙钛矿异质成核结晶实现高效稳定柔性光伏组件
- 批准号:52202292
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
枯草芽孢杆菌合成核黄素的基因组工程研究
- 批准号:21576200
- 批准年份:2015
- 资助金额:65.0 万元
- 项目类别:面上项目
仿生硅矿化提高疫苗热稳定性的研究
- 批准号:31400785
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
聚丙烯取向β晶生成与工程实现研究
- 批准号:51473135
- 批准年份:2014
- 资助金额:85.0 万元
- 项目类别:面上项目
相似海外基金
AGS-FIRP Track 1: Application of an Ice Nucleation Cold Stage for Teaching Cloud Microphysics in Science and Engineering Classes at a Minority-serving Institution
AGS-FIRP 轨道 1:冰核冷台在少数族裔服务机构的科学和工程课程中教授云微物理的应用
- 批准号:
2401140 - 财政年份:2024
- 资助金额:
$ 33.92万 - 项目类别:
Standard Grant
Development of novel high-performance fire suppressants via synthetic chemistry and fire-safety engineering approaches
通过合成化学和消防安全工程方法开发新型高性能灭火剂
- 批准号:
22K04614 - 财政年份:2022
- 资助金额:
$ 33.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Advanced Nucleation Technologies for Membrane Protein Crystallization to Accelerate Structure-Based Drug Design for Substance Use Disorders
先进的膜蛋白结晶成核技术可加速针对药物滥用疾病的基于结构的药物设计
- 批准号:
10546186 - 财政年份:2022
- 资助金额:
$ 33.92万 - 项目类别:
Advanced Nucleation Technologies for Membrane Protein Crystallization to Accelerate Structure-Based Drug Design for Substance Use Disorders
先进的膜蛋白结晶成核技术可加速针对药物滥用疾病的基于结构的药物设计
- 批准号:
10707123 - 财政年份:2022
- 资助金额:
$ 33.92万 - 项目类别:
CAREER: Large Scale Simulations Enabled Materials Engineering for Heterogeneous Ice Nucleation
职业:大规模模拟支持异质冰核材料工程
- 批准号:
2224643 - 财政年份:2021
- 资助金额:
$ 33.92万 - 项目类别:
Standard Grant