Understanding and Engineering the Nucleation of Enzyme Metal-Organic Frameworks
理解和设计酶金属有机框架的成核
基本信息
- 批准号:2102033
- 负责人:
- 金额:$ 33.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Enzymes are natural catalysts that can be used by chemical industries to speed up the rate of reactions and reduce the energy requirements of catalytic processes. However, enzymes are not typically stable outside of the physiological environment in which they evolved, significantly limiting their utility for industrial applications. A potential solution to this problem is to immobilize enzymes onto support structures. The ideal support material must be capable of loading high quantities of the active form of the enzyme. The support should also increase the stability and recyclability of the enzyme compared to the free enzyme in solution. Metal-organic frameworks (MOFs) are a promising class of materials for enzyme immobilization. MOFs are porous crystalline materials formed by the self-assembly of metal ions and organic ligands. Enzymes can be immobilized on MOFs by simply mixing the metal, ligand, and enzyme in aqueous solutions at room temperature. The enzymes are then incorporated into the MOF framework during the nucleation and growth processes. Understanding how this process works requires a detailed analysis of the system's nucleation and growth mechanisms. This fundamental mechanistic knowledge will provide robust design rules for the synthesis of enzyme-immobilized MOFs with high loading of the active form of the enzyme. The ability to immobilize practically any enzyme at the MOF surface has the potential to revolutionize the biotechnology industry and benefit society through lower energy chemical processes. The investigator will also develop a mobile K-12 outreach activity that uses low-cost microscopy to observe salt crystal growth. This project aims to determine the nucleation and growth mechanisms of enzyme MOF composite materials. The approach employs cryogenic and liquid-phase electron microscopy. Cryogenic electron microscopy will be used to trap intermediates and analyze their high-resolution structure. Liquid-phase electron microscopy will be used to monitor the kinetics of absorption, nucleation, and growth. The electron microscopy data will be supported by bulk scattering analysis using light and X-rays. The knowledge gained from these mechanistic studies will be used to re-engineer the interfacial chemistry to improve both encapsulation efficiency and enzymatic activity. The project will reveal the formation mechanisms, how the mechanisms can be manipulated by tuning the interfacial chemistry, and the structure-property relationships.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
酶是天然催化剂,可用于化学工业,以加快反应速率并降低催化过程的能量需求。然而,酶在它们进化的生理环境之外通常不稳定,这显著限制了它们在工业应用中的效用。这个问题的一个潜在的解决方案是将酶固定在支持结构上。理想的载体材料必须能够负载大量的酶的活性形式。与溶液中的游离酶相比,载体还应增加酶的稳定性和可回收性。金属有机骨架材料是一类很有前途的酶固定化材料。MOFs是由金属离子和有机配体自组装形成的多孔晶体材料。通过在室温下将金属、配体和酶在水溶液中简单地混合,可以将酶固定在MOF上。然后在成核和生长过程中将酶并入MOF框架中。要了解这个过程是如何工作的,需要对系统的成核和生长机制进行详细分析。这一基本的机理知识将为合成具有高负载的活性形式的酶的酶固定化的M0 F提供稳健的设计规则。在MOF表面上吸附几乎任何酶的能力有可能彻底改变生物技术行业,并通过低能耗化学过程造福社会。研究人员还将开发一种移动的K-12外展活动,使用低成本显微镜观察盐晶体生长。本计画旨在探讨酵素复合材料之成核与成长机制。该方法采用低温和液相电子显微镜。低温电子显微镜将用于捕获中间体并分析其高分辨率结构。液相电子显微镜将用于监测吸收,成核和生长的动力学。电子显微镜数据将得到使用光和X射线的体散射分析的支持。从这些机制研究中获得的知识将用于重新设计界面化学,以提高包封效率和酶活性。该项目将揭示形成机制,如何通过调整界面化学来操纵这些机制,以及结构-性质关系。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joe Patterson其他文献
Joe Patterson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joe Patterson', 18)}}的其他基金
CAREER: Ring-Opening Polymerization-Induced Crystallization-Driven Self-Assembly
职业:开环聚合诱导结晶驱动的自组装
- 批准号:
2238834 - 财政年份:2023
- 资助金额:
$ 33.92万 - 项目类别:
Continuing Grant
相似国自然基金
Frontiers of Environmental Science & Engineering
- 批准号:51224004
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese Journal of Chemical Engineering
- 批准号:21224004
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese Journal of Chemical Engineering
- 批准号:21024805
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:专项基金项目
相似海外基金
2024 - 2025 National Science Foundation (NSF) Computer and Information Science and Engineering (CISE) Research Experiences for Undergraduates (REU) Principal Investigator Workshops
2024 - 2025 美国国家科学基金会 (NSF) 计算机与信息科学与工程 (CISE) 本科生研究经验 (REU) 首席研究员研讨会
- 批准号:
2407231 - 财政年份:2024
- 资助金额:
$ 33.92万 - 项目类别:
Continuing Grant
Travel: NSF Student Travel Grant for 2024 ACM/IEEE International Conference on Software Engineering
旅行:2024 年 ACM/IEEE 软件工程国际会议 NSF 学生旅行补助金
- 批准号:
2413092 - 财政年份:2024
- 资助金额:
$ 33.92万 - 项目类别:
Standard Grant
Conference: Polymeric Materials: Science and Engineering Division Centennial Celebration at the Spring 2024 American Chemical Society Meeting
会议:高分子材料:美国化学会 2024 年春季会议科学与工程部百年庆典
- 批准号:
2415569 - 财政年份:2024
- 资助金额:
$ 33.92万 - 项目类别:
Standard Grant
REU Site: University of Colorado, Engineering Smart Biomaterials
REU 站点:科罗拉多大学,工程智能生物材料
- 批准号:
2348856 - 财政年份:2024
- 资助金额:
$ 33.92万 - 项目类别:
Standard Grant
REU Site: Nature's machinery through the prism of Physics, Biology, Chemistry and Engineering
REU 网站:通过物理、生物、化学和工程学的棱镜观察自然的机器
- 批准号:
2349368 - 财政年份:2024
- 资助金额:
$ 33.92万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 33.92万 - 项目类别:
Standard Grant
Biology Meets Engineering: Expanding Transdisciplinary STEM Education
生物学与工程学的结合:扩展跨学科 STEM 教育
- 批准号:
2342578 - 财政年份:2024
- 资助金额:
$ 33.92万 - 项目类别:
Continuing Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:CyberTraining:试点:PowerCyber:电力工程研究人员的计算培训
- 批准号:
2319895 - 财政年份:2024
- 资助金额:
$ 33.92万 - 项目类别:
Standard Grant
CAREER: Eradicate the Gate: Empowering Learners and Equalizing Assessment in K12 Engineering Education
职业:消除大门:K12 工程教育中的学习者赋权和均衡评估
- 批准号:
2339619 - 财政年份:2024
- 资助金额:
$ 33.92万 - 项目类别:
Continuing Grant
CAREER: Securing Next-Generation Transportation Infrastructure: A Traffic Engineering Perspective
职业:保护下一代交通基础设施:交通工程视角
- 批准号:
2339753 - 财政年份:2024
- 资助金额:
$ 33.92万 - 项目类别:
Standard Grant














{{item.name}}会员




