Ultra-High Efficiency Microwave Plasma for Extreme Low-Power Applications
适用于极低功耗应用的超高效率微波等离子体
基本信息
- 批准号:2102100
- 负责人:
- 金额:$ 36.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Cold plasma is a critical technology in many application fields such as plasma medicine, food preservation, water treatment, reconfigurable electronics, high-quality lighting, electric propulsion systems, sterilization, and microfabrication. However, generating stable plasma is not a trivial task as bulky, expensive, and energy-hungry units are often required. To facilitate widespread use, particularly in low resource settings, there is a need for high efficiency, low power, and low-cost plasmas. Preliminary results indicate that it is indeed possible to achieve plasma of required density with very low input power, even in the milliwatts range, by properly employing microwave resonant structures. Hence, the overarching objective of this effort is to fundamentally investigate extremely low-power and highly efficient resonant microwave plasmas using theoretical, computational, and experimental approaches. This research will advance the knowledge on the fundamental understanding of low-temperature resonant microwave plasmas and is expected to elucidate the interactions between electromagnetic waves and plasmas including self-sustained resonant microwave plasmas. The outcomes of this research will pave the road for the next generation of low-cost and readily available plasma generators. This project is expected to change the understanding of not only the plasma community but also the engineering community that rely on conventional bulky and cumbersome plasma sources that inherently limit their applications. The research results will also be utilized for educational purposes, both at the undergraduate and graduate levels, as well as for scientific demonstrations to children to increase their knowledge about plasma and potentially attract them to the STEM field.Although DC, pulse, and RF plasmas have been extensively explored, there is no comprehensive understanding of microwave plasmas, especially in resonant mode. Resonant microwave plasma occurs in the alpha–discharge regime with an extremely low sheath voltage drop, ensuring that the ignited plasma is stable with no electrode erosion as an important lifetime issue. The proposed research is aimed at developing a theoretical framework for extreme high efficiency and low power plasmas, simulating their behavior computationally, and experimentally validating the theory and computational models. Such plasma can potentially be powered by low-power and readily available supplies including cell phones, solar cells, or even batteries, which makes it safe, low cost, portable, and readily available to many end users. To turn this vision into reality, four major objectives are being pursued: (1) development of a fundamental understanding of resonant microwave discharge physics, (2) assessment and utilization of proper high quality-factor microwave resonant structures, (3) design and implementation of innovative engineered electrodes, and (4) investigation of pre-ionization (e.g., DC and RF) and pulsed microwave techniques. In addition, arrays of scalable resonators will be employed for larger plasma regions. The results of this research are expected to facilitate the realization of ultra-low power plasma sources that can become directly available to many end users.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
冷等离子体是许多应用领域的关键技术,如等离子体医学、食品保存、水处理、可重构电子、高质量照明、电力推进系统、灭菌和微加工。然而,产生稳定的等离子体并不是一项微不足道的任务,因为通常需要笨重、昂贵和耗能的装置。为了促进广泛使用,特别是在资源匮乏的环境中,需要高效率、低功率和低成本的等离子体。初步结果表明,通过适当地采用微波谐振结构,确实有可能以极低的输入功率,甚至在毫瓦范围内获得所需密度的等离子体。因此,这项工作的总体目标是从根本上研究极低功率和高效率的谐振微波等离子体,使用理论,计算和实验方法。本研究将进一步加深对低温共振微波等离子体的基本认识,并有望阐明电磁波与等离子体(包括自维持共振微波等离子体)之间的相互作用。这项研究的成果将为下一代低成本、易得的等离子发生器铺平道路。预计该项目不仅会改变等离子体社区的理解,还会改变工程界对传统的笨重等离子体源的理解,这些等离子体源固有地限制了它们的应用。研究结果还将用于本科和研究生阶段的教育目的,以及向儿童进行科学演示,以增加他们对等离子体的了解,并有可能吸引他们进入STEM领域。虽然直流、脉冲和射频等离子体已经被广泛探索,但对微波等离子体,特别是在谐振模式下,还没有全面的了解。谐振微波等离子体发生在极低的护套电压降的α放电状态,确保点燃的等离子体稳定,没有电极侵蚀,这是一个重要的寿命问题。本研究旨在建立极高效低功率等离子体的理论框架,通过计算模拟其行为,并通过实验验证理论和计算模型。这种等离子体可以由低功耗和现成的供应,包括手机,太阳能电池,甚至电池供电,这使得它安全,低成本,便携,并且易于许多最终用户使用。为了将这一愿景变为现实,目前正在追求四个主要目标:(1)对谐振微波放电物理的基本理解的发展,(2)适当的高质量因子微波谐振结构的评估和利用,(3)创新工程电极的设计和实施,以及(4)预电离(例如直流和射频)和脉冲微波技术的研究。此外,可伸缩谐振器阵列将用于更大的等离子体区域。这项研究的结果有望促进超低功率等离子体源的实现,这些等离子体源可以直接提供给许多最终用户。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Highly Efficient Microwave Plasma Jet Based on Evanescent-Mode Cavity Resonator Technology
- DOI:10.1109/tps.2022.3202509
- 发表时间:2022-10
- 期刊:
- 影响因子:1.5
- 作者:A. Semnani;K. S. Kabir
- 通讯作者:A. Semnani;K. S. Kabir
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Abbas Semnani其他文献
Abbas Semnani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Abbas Semnani', 18)}}的其他基金
CAREER: Novel Microplasmas for Highly Compact and Versatile RF Electronics
事业:用于高度紧凑和多功能射频电子器件的新型微等离子体
- 批准号:
2337815 - 财政年份:2024
- 资助金额:
$ 36.5万 - 项目类别:
Continuing Grant
相似海外基金
High-Efficiency, Modular and Low-Cost Hydrogen Liquefaction and Storage
高效、模块化、低成本的氢气液化和储存
- 批准号:
DE240100863 - 财政年份:2024
- 资助金额:
$ 36.5万 - 项目类别:
Discovery Early Career Researcher Award
Evaluating the Impact and Efficiency of Engineering the Ocean to Remove CO2
评估海洋工程去除二氧化碳的影响和效率
- 批准号:
DE240100115 - 财政年份:2024
- 资助金额:
$ 36.5万 - 项目类别:
Discovery Early Career Researcher Award
SBIR Phase I: High-Efficiency Liquid Desiccant Regenerator for Desiccant Enhanced Evaporative Air Conditioning
SBIR 第一阶段:用于干燥剂增强蒸发空调的高效液体干燥剂再生器
- 批准号:
2335500 - 财政年份:2024
- 资助金额:
$ 36.5万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of Cellulose-Nanofiber-Based Surface Agents for Enhancing Bioactive Filtration Efficiency
I-Corps:纤维素纳米纤维基表面剂在提高生物活性过滤效率方面的转化潜力
- 批准号:
2401619 - 财政年份:2024
- 资助金额:
$ 36.5万 - 项目类别:
Standard Grant
SBIR Phase I: Optimizing Safety and Fuel Efficiency in Autonomous Rendezvous and Proximity Operations (RPO) of Uncooperative Objects
SBIR 第一阶段:优化不合作物体自主交会和邻近操作 (RPO) 的安全性和燃油效率
- 批准号:
2311379 - 财政年份:2024
- 资助金额:
$ 36.5万 - 项目类别:
Standard Grant
Digitally Assisted Power Amplifier Design with Enhanced Energy Efficiency
具有增强能效的数字辅助功率放大器设计
- 批准号:
LP220200906 - 财政年份:2024
- 资助金额:
$ 36.5万 - 项目类别:
Linkage Projects
ELectrochemical OXidation of cYclic and biogenic substrates for high efficiency production of organic CHEMicals (ELOXYCHEM)
用于高效生产有机化学品的循环和生物底物的电化学氧化 (ELOXYCHEM)
- 批准号:
10110221 - 财政年份:2024
- 资助金额:
$ 36.5万 - 项目类别:
EU-Funded
ELectrochemical OXidation of cYclic and biogenic substrates for high efficiency production of organic CHEMicals
循环和生物底物的电化学氧化,用于高效生产有机化学品
- 批准号:
10111012 - 财政年份:2024
- 资助金额:
$ 36.5万 - 项目类别:
EU-Funded
Cost-Effective, AI-driven Automation Technology for Cell Culture Monitoring: Boosting Efficiency and Sustainability in Industrial Biomanufacturing and Streamlining Supply Chains
用于细胞培养监测的经济高效、人工智能驱动的自动化技术:提高工业生物制造的效率和可持续性并简化供应链
- 批准号:
10104748 - 财政年份:2024
- 资助金额:
$ 36.5万 - 项目类别:
Launchpad
ViMuSe - a video-based AI music recommendation engine to improve creative efficiency and diversity.
ViMuSe - 基于视频的AI音乐推荐引擎,可提高创作效率和多样性。
- 批准号:
10104871 - 财政年份:2024
- 资助金额:
$ 36.5万 - 项目类别:
Collaborative R&D