Emergent Opto-Mechanical and Electro-Mechanical Coupled Behavior of Halide Perovskites
卤化物钙钛矿的新兴光机和机电耦合行为
基本信息
- 批准号:2102210
- 负责人:
- 金额:$ 48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nontechnical DescriptionSo-called ‘halide perovskites’ are a family of materials at the heart of a new type of solar-cell technology. These new solar cells are showing great promise as they are not only highly efficient in converting sunlight into electricity but also potentially very inexpensive to manufacture. However, the mechanical properties of these new solar cell materials are not known, especially under operating conditions of a solar cell: in sunlight, and also when electric current is passing through them. Thus, it is very important to study and understand these properties because they determine the long-term durability of the new solar cells, which are expected to operate efficiently for twenty years or more in the element. To that end, systematic research is conducted, where the following relevant mechanical properties of the new solar cell materials are studied under light and/or electric current: (1) cracking and healing of the cracks; (2) plastic deformation; and (3) time-dependent deformation. These studies are conducted on materials of well-defined chemical compositions, configurations, and morphologies. The results from these studies are analyzed critically to understand the behavior of the new solar cell materials. This is expected to have a broad impact on the ability to make highly durable, low-cost solar cells of the future, and to help this new solar-cell technology then reach its full potential. As part of this effort, underrepresented minority undergraduate researchers from Tugaloo College are trained. This leverages the fifty-year old partnership between Brown University and Tugaloo College -- an Historically Black College or University. The public outreach effort is aimed at enhancing the public's understanding of concepts in science, engineering, and technology. This entails leveraging the well-established science cartoons (SciToons) program at Brown University for creating two new SciToons on: ‘Emerging Solar Cells Technologies’ and ‘Strength of Materials.’Technical DescriptionThere are compelling reasons to suggest there are fascinating, rich opto-mechanical and electro-mechanical coupled behavior in halide perovskite materials, yet there is extreme paucity of research in this area. Considering the unprecedented promise of halide perovskites for new types of solar-cell and other devices, it is imperative to have a more in-depth understanding of the mechanical degradation of halide perovskites coupled with optical and/or electrical stimuli that are ubiquitous in devices. To that end, this project comes at a highly opportune time, and it entails four interrelated Tasks, and several Subtasks within. In Task 1, the effect of electric field on the fracture and crack-healing behavior in halide perovskite single-crystals and thin films is studied experimentally and quantified. Task 2 involves the quantitative study of plastic deformation of halide perovskite single-crystals, and the effect of light (photoplasticity). In Task 3, the effect of electric field on the time-dependent creep deformation of halide perovskite bulk polycrystalline pellets is studied. The efficient generation of photocarriers and facile ion migration in soft halide perovskites are expected to mediate crack-healing, plasticity, and creep phenomena, through their interactions with point and line (dislocations) defects in halide perovskites. Finally, in Task 4 the manifestation of photoplasticity effects, as an example, are demonstrated in devices. The considerable research infrastructure needed for the project developed at Brown University is leveraged fully. This research contributes to the scientific foundation for the development of next-generation perovskite solar-cell and other devices that are more efficient, and importantly more durable over the long term. As such, this research is expected to be highly impactful, and useful to researchers and technology developers alike.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述所谓的“卤化物钙钛矿”是新型太阳能电池技术核心的一系列材料。这些新型太阳能电池显示出巨大的前景,因为它们不仅能够高效地将阳光转化为电能,而且制造成本也可能非常低廉。然而,这些新型太阳能电池材料的机械性能尚不清楚,特别是在太阳能电池的工作条件下:在阳光下,以及当电流通过它们时。因此,研究和理解这些特性非常重要,因为它们决定了新型太阳能电池的长期耐用性,预计新型太阳能电池可以在元件中有效运行二十年或更长时间。为此,进行了系统的研究,研究了新型太阳能电池材料在光和/或电流下的以下相关机械性能:(1)裂纹的破裂和愈合; (2)塑性变形; (3)随时间变化的变形。这些研究是针对具有明确化学成分、结构和形态的材料进行的。对这些研究的结果进行严格分析,以了解新型太阳能电池材料的行为。预计这将对未来制造高度耐用、低成本太阳能电池的能力产生广泛影响,并帮助这种新的太阳能电池技术充分发挥其潜力。作为这项工作的一部分,图加卢学院代表性不足的少数族裔本科研究人员接受了培训。这利用了布朗大学和图加卢学院(一所历史悠久的黑人学院或大学)之间长达五十年的合作伙伴关系。公众宣传工作旨在增强公众对科学、工程和技术概念的理解。这需要利用布朗大学成熟的科学漫画 (SciToons) 项目来创建两个新的 SciToons:“新兴太阳能电池技术”和“材料强度”。技术描述有充分的理由表明卤化物钙钛矿材料具有令人着迷、丰富的光机和机电耦合行为,但该领域的研究极其缺乏。考虑到卤化物钙钛矿在新型太阳能电池和其他设备中的前所未有的前景,有必要更深入地了解卤化物钙钛矿的机械降解以及设备中普遍存在的光学和/或电刺激。为此,该项目来得正是时候,它需要四个相互关联的任务以及其中的几个子任务。在任务 1 中,通过实验和量化研究了电场对卤化物钙钛矿单晶和薄膜断裂和裂纹愈合行为的影响。任务2涉及卤化物钙钛矿单晶塑性变形的定量研究,以及光的影响(光塑性)。在任务 3 中,研究了电场对卤化物钙钛矿块状多晶颗粒随时间变化的蠕变变形的影响。软卤化物钙钛矿中光载流子的有效产生和容易的离子迁移有望通过与卤化物钙钛矿中的点和线(位错)缺陷的相互作用来介导裂纹愈合、塑性和蠕变现象。最后,在任务 4 中,光塑性效应的表现例如在设备中得到演示。布朗大学开发的项目所需的大量研究基础设施得到了充分利用。这项研究为开发下一代钙钛矿太阳能电池和其他更高效、更重要的是更长期耐用的设备奠定了科学基础。因此,这项研究预计将具有高度影响力,对研究人员和技术开发人员都非常有用。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The mechanical behavior of metal-halide perovskites: Elasticity, plasticity, fracture, and creep
- DOI:10.1016/j.scriptamat.2022.115064
- 发表时间:
- 期刊:
- 影响因子:6
- 作者:Zhenghong Dai;Meaghan C. Doyle;Xing Liu;Mingyu Hu;Qizhong Wang;Christos E. Athanasiou;Yucheng Liu;B. Sheldon;Huajian Gao;S. Liu;N. Padture
- 通讯作者:Zhenghong Dai;Meaghan C. Doyle;Xing Liu;Mingyu Hu;Qizhong Wang;Christos E. Athanasiou;Yucheng Liu;B. Sheldon;Huajian Gao;S. Liu;N. Padture
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nitin Padture其他文献
Nitin Padture的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nitin Padture', 18)}}的其他基金
RII Track-2 FEC: Low-Cost, Efficient Next-Generation Solar Cells for the Coming Clean Energy Revolution
RII Track-2 FEC:面向即将到来的清洁能源革命的低成本、高效的下一代太阳能电池
- 批准号:
1538893 - 财政年份:2015
- 资助金额:
$ 48万 - 项目类别:
Cooperative Agreement
Ceramics Science of New Solid-State Solar Cells
新型固态太阳能电池的陶瓷科学
- 批准号:
1305913 - 财政年份:2013
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
Sensors: Engineered Nanowires and Arrays as Advanced Chemical Nanosensors
传感器:作为先进化学纳米传感器的工程纳米线和阵列
- 批准号:
0514012 - 财政年份:2005
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Sensors: Engineered Nanowires and Arrays as Advanced Chemical Nanosensors
传感器:作为先进化学纳米传感器的工程纳米线和阵列
- 批准号:
0426450 - 财政年份:2004
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
SGER: Engineered Nanowires and Devices
SGER:工程纳米线和器件
- 批准号:
0342805 - 财政年份:2003
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Microstructural Evolution in In-Situ-Reinforced Silicon Carbide Ceramics
原位增强碳化硅陶瓷的微观结构演变
- 批准号:
9523648 - 财政年份:1996
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
相似海外基金
Nano-Opto-Electro-Mechanical Integrated Oscillator Arrays for Energy-Efficient Physical Reservoir Computing (NOEMIA)
用于节能物理油藏计算的纳米光机电集成振荡器阵列 (NOEMIA)
- 批准号:
EP/X03495X/1 - 财政年份:2023
- 资助金额:
$ 48万 - 项目类别:
Research Grant
Advanced micro-opto-electro-mechanical systems for elastic optical telecommunications networks
用于弹性光通信网络的先进微光机电系统
- 批准号:
530551-2018 - 财政年份:2022
- 资助金额:
$ 48万 - 项目类别:
Collaborative Research and Development Grants
Opto-Thermo-Mechanical Microsystems for Energy Conversion and High Precision Sensing
用于能量转换和高精度传感的光热机械微系统
- 批准号:
RGPIN-2018-04412 - 财政年份:2022
- 资助金额:
$ 48万 - 项目类别:
Discovery Grants Program - Individual
Advanced micro-opto-electro-mechanical systems for elastic optical telecommunications networks
用于弹性光通信网络的先进微光机电系统
- 批准号:
530551-2018 - 财政年份:2022
- 资助金额:
$ 48万 - 项目类别:
Collaborative Research and Development Grants
Advanced micro-opto-electro-mechanical systems for elastic optical telecommunications networks
用于弹性光通信网络的先进微光机电系统
- 批准号:
530551-2018 - 财政年份:2021
- 资助金额:
$ 48万 - 项目类别:
Collaborative Research and Development Grants
Opto-Thermo-Mechanical Microsystems for Energy Conversion and High Precision Sensing
用于能量转换和高精度传感的光热机械微系统
- 批准号:
RGPIN-2018-04412 - 财政年份:2021
- 资助金额:
$ 48万 - 项目类别:
Discovery Grants Program - Individual
Opto-Thermo-Mechanical Microsystems for Energy Conversion and High Precision Sensing
用于能量转换和高精度传感的光热机械微系统
- 批准号:
RGPIN-2018-04412 - 财政年份:2020
- 资助金额:
$ 48万 - 项目类别:
Discovery Grants Program - Individual
Advanced Multifunctional Electro-Opto-Magneto-Mechanical Analysis Platform
先进的多功能电光磁力分析平台
- 批准号:
LE200100032 - 财政年份:2020
- 资助金额:
$ 48万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Investigating the effects of thermal-opto-mechanical interactions on optical responses of multilayer semiconductor nanocrystals
研究热光机械相互作用对多层半导体纳米晶体光学响应的影响
- 批准号:
2018411 - 财政年份:2020
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Advanced micro-opto-electro-mechanical systems for elastic optical telecommunications networks
用于弹性光通信网络的先进微光机电系统
- 批准号:
530551-2018 - 财政年份:2020
- 资助金额:
$ 48万 - 项目类别:
Collaborative Research and Development Grants














{{item.name}}会员




