A Hierarchy of Fragment-based Quantum Chemical Models Incorporating Machine Learning for Applications in Nanoscale Systems

基于片段的量子化学模型的层次结构结合了机器学习在纳米级系统中的应用

基本信息

  • 批准号:
    2102583
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Krishnan Raghavachari of Indiana University is supported by an award from the Chemical Theory, Models and Computational Methods program in the Division of Chemistry to develop a set of quantum chemical computational methods incorporating machine learning for broad applications in nanoscale systems. While many accurate methods have previously been developed in quantum chemistry by different groups, their applicability thus far has been limited to small molecules due to their associated prohibitive computational cost. Attaining computational efficiency along with accuracy represents the most fundamental obstacle for quantum chemistry today. The new methods that are being proposed by Raghavachari aim to fill this need to treat medium-sized and large molecules accurately, providing systematic well-tested models to the study of nanoscale systems. The methods will combine ideas based on molecular fragmentation, systematic error-correction, and state-of-the-art machine learning to achieve high accuracy in conjunction with computational efficiency, with the aim of providing new tools to solve challenging problems involving intermediate-sized to large molecular systems and materials. Computational nanoscience, as a rapidly expanding field, is attracting student interest, and these projects are expected to provide an excellent training platform for the next generation of researchers in computational chemistry. In order to accomplish goals of this project, Dr. Raghavachari and coworkers will build on two different lines of research that have been developed in the group. In the first approach, they will develop a stepping-stone model based on Connectivity-based Hierarchy (CBH) to provide systematic error corrections to density functional theory (DFT) to result in accuracy comparable to coupled cluster calculations. This will be done using a two- or three-layer model where more accurate calculations are carried out on small fragments to correct for the DFT errors and achieve chemical accuracy. In the second approach, Raghavachari will develop a general computational framework that unifies the advantages of connectivity-based fragmentation with graph network-based machine learning to attain sub-kcal accuracy (“chemical accuracy”) in the calculated energies. Raghavachari has proposed that node embeddings based on molecular fragments will outperform most molecular fingerprints used traditionally in most machine learning applications. The newly developed methods have the potential to provide unprecedented accuracy for the treatment of complex problems involving nanoscale systems. The resulting computational tools will be developed in a platform-independent manner and should work with multiple quantum chemical packages, and will be made freely available for use by other research groups.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
印第安纳州大学的Krishnan Raghavachari获得了化学系化学理论、模型和计算方法项目的一项奖励,以开发一套结合机器学习的量子化学计算方法,用于纳米级系统的广泛应用。虽然许多精确的方法以前已经在量子化学中由不同的小组开发,但由于其相关的高昂的计算成本,它们的适用性迄今为止仅限于小分子。实现计算效率沿着的准确性代表了当今量子化学最根本的障碍。Raghavachari提出的新方法旨在满足精确处理中型和大型分子的需求,为纳米级系统的研究提供系统的经过良好测试的模型。这些方法将结合基于分子片段化、系统纠错和最先进的机器学习的联合收割机思想,以实现高精度和计算效率,目的是提供新的工具来解决涉及中型到大型分子系统和材料的挑战性问题。计算纳米科学作为一个快速发展的领域,正在吸引学生的兴趣,这些项目有望为下一代计算化学研究人员提供一个优秀的培训平台。为了实现这个项目的目标,Raghavachari博士和他的同事们将建立在该小组已经开发的两条不同的研究路线上。在第一种方法中,他们将开发一个基于连接性层次(CBH)的垫脚石模型,为密度泛函理论(DFT)提供系统误差校正,以获得与耦合簇计算相当的精度。这将使用两层或三层模型来完成,其中对小碎片进行更精确的计算,以校正DFT误差并实现化学准确性。在第二种方法中,Raghavachari将开发一个通用的计算框架,将基于连通性的碎片化与基于图网络的机器学习的优势结合起来,以获得计算能量的亚千卡精度(“化学精度”)。Raghavachari提出,基于分子片段的节点嵌入将优于大多数机器学习应用中传统使用的大多数分子指纹。新开发的方法有可能为涉及纳米系统的复杂问题的处理提供前所未有的准确性。由此产生的计算工具将以独立于平台的方式开发,并应与多个量子化学软件包一起工作,并将免费提供给其他研究小组使用。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ONIOM Method with Charge Transfer Corrections (ONIOM-CT): Analytic Gradients and Benchmarking
带有电荷转移校正的 ONIOM 方法 (ONIOM-CT):解析梯度和基准测试
  • DOI:
    10.1021/acs.jctc.2c00584
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Tripathy, Vikrant;Mayhall, Nicholas J.;Raghavachari, Krishnan
  • 通讯作者:
    Raghavachari, Krishnan
High‐fidelity Recognition of Organotrifluoroborate Anions (R−BF 3 − ) as Designer Guest Molecules
高保真度识别有机三氟硼酸根阴离子 (R–BF 3–) 作为设计客体分子
  • DOI:
    10.1002/chem.202201584
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sheetz, Edward G.;Zhang, Zhao;Marogil, Alyssa;Che, Minwei;Pink, Maren;Carta, Veronica;Raghavachari, Krishnan;Flood, Amar H.
  • 通讯作者:
    Flood, Amar H.
A Fragmentation-Based Graph Embedding Framework for QM/ML
用于 QM/ML 的基于碎片的图嵌入框架
  • DOI:
    10.1021/acs.jpca.1c06152
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Collins, Eric M.;Raghavachari, Krishnan
  • 通讯作者:
    Raghavachari, Krishnan
Quantitative Prediction of Vertical Ionization Potentials from DFT via a Graph-Network-Based Delta Machine Learning Model Incorporating Electronic Descriptors
通过基于图网络并结合电子描述符的 Delta 机器学习模型从 DFT 定量预测垂直电离势
  • DOI:
    10.1021/acs.jpca.2c08821
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Maier, Sarah;Collins, Eric M.;Raghavachari, Krishnan
  • 通讯作者:
    Raghavachari, Krishnan
Interpretable Graph-Network-Based Machine Learning Models via Molecular Fragmentation
通过分子碎片可解释的基于图网络的机器学习模型
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Krishnan Raghavachari其他文献

Krishnan Raghavachari的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Krishnan Raghavachari', 18)}}的其他基金

A hierarchy of composite quantum chemical models for applications in materials chemistry and nanoscience
用于材料化学和纳米科学应用的复合量子化学模型的层次结构
  • 批准号:
    1665427
  • 财政年份:
    2017
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
A hierarchy of composite quantum chemical models for applications in materials and surface Chemistry
用于材料和表面化学应用的复合量子化学模型的层次结构
  • 批准号:
    1266154
  • 财政年份:
    2013
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Quantum chemical investigations of surface chemistry with a hierarchy of cluster models
使用簇模型层次结构对表面化学进行量子化学研究
  • 批准号:
    0911454
  • 财政年份:
    2009
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Quantum chemical investigations of surface chemistry with a hierarchy of cluster models
使用簇模型层次结构对表面化学进行量子化学研究
  • 批准号:
    0616737
  • 财政年份:
    2006
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant

相似海外基金

Integrated fragment-based phenotypic screening and chemoproteomics for identification of novel small cell lung cancer-specific targets
基于片段的表型筛选和化学蛋白质组学相结合,用于鉴定新型小细胞肺癌特异性靶标
  • 批准号:
    10577507
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
Hit-to-lead optimisation of fragment hits targeting SARS-CoV-2 non structural protein 10 using structure-based drug design
使用基于结构的药物设计对针对 SARS-CoV-2 非结构蛋白 10 的片段命中进行命中到先导优化
  • 批准号:
    MR/X013995/1
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Research Grant
Fragment-based Discovery of COMT Inhibitors as a Novel Pharmacotherapy for Alcoholism
基于片段的 COMT 抑制剂的发现作为酒精中毒的新型药物疗法
  • 批准号:
    10667129
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
Overcoming resistance to KRAS inhibitors through a fragment-based chemoproteomics approach
通过基于片段的化学蛋白质组学方法克服对 KRAS 抑制剂的耐药性
  • 批准号:
    10722113
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
Fragment-based drug discovery for the sweet tooth of prostate cancer
针对前列腺癌的基于片段的药物发现
  • 批准号:
    2755856
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Studentship
Improving Fragment Based Drug Discovery and the Development of Tools for Chemical Biology through Nanoscale Encapsulation and NMR Spectroscopy
通过纳米级封装和核磁共振波谱改善基于片段的药物发现和化学生物学工具的开发
  • 批准号:
    10419416
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
Improving Fragment Based Drug Discovery and the Development of Tools for Chemical Biology through Nanoscale Encapsulation and NMR Spectroscopy
通过纳米级封装和核磁共振波谱改善基于片段的药物发现和化学生物学工具的开发
  • 批准号:
    10707914
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
An NMR-Based Fragment Screening Platform for Rapid Identification of Protein Ligands
基于 NMR 的片段筛选平台,用于快速鉴定蛋白质配体
  • 批准号:
    559259-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Targeting ovarian cancer using fragment-based drug discovery
使用基于片段的药物发现靶向卵巢癌
  • 批准号:
    2753257
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Studentship
A Fragment-Based Strategy for K-RAS Covalent Inhibitors
基于片段的 K-RAS 共价抑制剂策略
  • 批准号:
    10290524
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了