Dynamic Model Identification for Inverter-Based Resources

基于逆变器的资源的动态模型识别

基本信息

  • 批准号:
    2103480
  • 负责人:
  • 金额:
    $ 35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

Historically, synchronous generators, invented in 1880s, are the main work horse for electricity generation. To date, generic models of synchronous machines for power grid dynamic analysis are well developed and indispensable for power grid dynamic analysis. The current power grid is going through a significant transition. Penetration of inverter-based resources (IBR), e.g., wind, solar, and batteries, is going up. For example, the U.S. Energy Information Administration’s hourly electric grid monitor shows that on May 2, 2020, 59% of power was generated by wind energy in Electric Reliability Council of Texas. IBRs significantly change grid dynamic characteristics. Unprecedented dynamic phenomena appeared in power grids. Examples include subsynchronous oscillations that occurred in 2009 and 2017 in Texas wind farms, low-frequency oscillations in an offshore wind farm that caused Great Britain power disruption on 9 August 9 2019, subcycle overvoltage dynamics which triggered large-scale solar photovoltaic (PV) tripping in California in 2017 and 2018, and instantaneous ac overcurrent dynamics which caused another large-scale PV tripping event in California in July 2020. High penetration of IBRs leads to a significant change in the modeling practice of the bulk power system industry. It is expected that generic models with standard structures will be used for grid dynamic evaluation as a future trend. On the other hand, models provided by original equipment manufacturers (OEMs) are black boxes. Real-code models provided by OEMs are usually in dynamic-linked library format with input and output specified while internal details not released. Though these real-code models have been benchmarked by hardware experiments, detailed structures and parameters are unknown. Thus, there is an urgent need: How to find the generic model’s parameters based on what we have, which are essentially black boxes?The objective of the proposed research is to address the urgent need to design a gray-box model identification framework for IBRs. This project makes two significant innovations, including (i) first principle based IBR gray-box model structure design and linear time invariant model derivation; and (ii) measurement-based IBR model structure parameter estimation relying on black-box model identification and advanced computing algorithms. The notable innovation is the integration of the two core technologies from two different fields: Power Electronics and System Identification. The two core technologies are: admittance-based black-box model measurement and identification and gray-box model identification through optimization problem formulation and solving. The project employs both computer simulation and hardware experiments for validation. This project tackles real-world IBR modeling challenges and can generate significant impact to the current power grid industry. The tackled problem falls into the category of gray-box model identification and this research will also generate reference values to many other domains (e.g., automotive systems and airplane systems) that use gray-box model identification approaches for model building and control design.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从历史上看,同步发电机,发明于1880年代,是主要的工作马发电。目前,同步电机的电网动态分析通用模型已经比较成熟,是电网动态分析不可缺少的工具。目前,电网正在经历重大转型。基于逆变器的资源(IBR)的渗透,例如,风能,太阳能,电池,都在增长例如,美国能源信息署每小时的电网监测显示,2020年5月2日,德克萨斯州电力可靠性理事会59%的电力由风能产生。IBR显著改变了电网的动态特性。电网中出现了前所未有的动态现象。例子包括2009年和2017年在德克萨斯州风电场发生的次同步振荡,2019年8月9日导致英国电力中断的海上风电场低频振荡,2017年和2018年在加州引发大规模太阳能光伏(PV)跳闸的子周期过电压动态,以及瞬时交流过流动态,导致2020年7月在加州发生另一起大规模光伏跳闸事件。IBR的高渗透率导致了大容量电力系统行业建模实践的重大变化。预计具有标准结构的通用模型将作为未来的趋势用于网格动态评估。另一方面,原始设备制造商(OEM)提供的模型是黑匣子。OEM提供的实码模型通常采用动态链接库格式,指定输入和输出,但不发布内部细节。虽然这些实码模型已经通过硬件实验进行了基准测试,但详细的结构和参数是未知的。因此,有一个迫切的需要:如何找到通用模型的参数的基础上,我们有什么,这基本上是黑盒子?建议的研究的目标是解决迫切需要设计一个灰箱模型识别框架IBRs。本项目的创新点主要有两点:(1)基于第一性原理的IBR灰箱模型结构设计和线性时不变模型推导;(2)基于观测的IBR模型结构参数估计,即基于黑箱模型辨识和先进的计算算法。值得注意的创新是来自两个不同领域的两项核心技术的整合:电力电子和系统识别。 两大核心技术是:基于导纳的黑箱模型测量和识别以及通过优化问题公式化和求解的灰箱模型识别。该项目采用计算机仿真和硬件实验进行验证。该项目解决了现实世界的IBR建模挑战,并可能对当前的电网行业产生重大影响。所解决的问题福尔斯属于灰箱模型辨识的范畴,本研究也将对许多其他领域产生参考价值(例如,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dynamic Model Identification via Hankel Matrix Fitting: Synchronous Generators and IBRs
A Laplace-Domain Circuit Model for Fault and Stability Analysis Considering Unbalanced Topology
考虑不平衡拓扑的故障和稳定性分析拉普拉斯域电路模型
  • DOI:
    10.1109/tpwrs.2022.3230564
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Miao, Zhixin;Fan, Lingling
  • 通讯作者:
    Fan, Lingling
Data-Driven Dynamic Modeling in Power Systems: A Fresh Look on Inverter-Based Resource Modeling
  • DOI:
    10.1109/mpe.2022.3150827
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Lingling Fan;Zhixin Miao;Shahil Shah;Przemyslaw Koralewicz;V. Gevorgian;Jian Fu
  • 通讯作者:
    Lingling Fan;Zhixin Miao;Shahil Shah;Przemyslaw Koralewicz;V. Gevorgian;Jian Fu
Generalized Circuit Representation for a Synchronous Machine
同步电机的广义电路表示
MIP Formulation for Type-III Wind Turbines Considering Control Limits
考虑控制极限的 III 型风力发电机 MIP 公式
  • DOI:
    10.1109/naps56150.2022.10012164
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alqahtani, Mohammed;Miao, Zhixin;Fan, Lingling
  • 通讯作者:
    Fan, Lingling
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lingling Fan其他文献

Integrating adsorption and in situ advanced oxidation for the treatment of organic wastewater by 3D carbon aerogel embedded with Fe-doped carbonitrides
嵌入铁掺杂碳氮化物的 3D 碳气凝胶集成吸附和原位高级氧化处理有机废水
  • DOI:
    10.1007/s11356-022-22275-7
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Shiquan Yan;Xinting Lai;Lingling Fan;Tianhao Wang;Yuyuan Yao;Wentao Wang
  • 通讯作者:
    Wentao Wang
MPPT control for a PMSG-based grid-tied wind generation system
基于 PMSG 的并网风力发电系统的 MPPT 控制
  • DOI:
    10.1109/naps.2010.5619585
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xin Wang;S. Yuvarajan;Lingling Fan
  • 通讯作者:
    Lingling Fan
Dynamic Parameter Estimation Based on Rank-Reduced Prony Analysis
基于降序Prony分析的动态参数估计
Distribution Locational Marginal Pricing (DLMP) for Multiphase Systems
多相系统的分销位置边际定价 (DLMP)
Negative sequence compensation techniques of DFIG-based wind energy systems under unbalanced grid conditions
电网不平衡情况下双馈风电系统负序补偿技术

Lingling Fan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lingling Fan', 18)}}的其他基金

Control of Wind Generation for Inter-Area Oscillation Damping
风力发电控制以抑制区域间振荡
  • 批准号:
    1005277
  • 财政年份:
    2009
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Control of Wind Generation for Inter-Area Oscillation Damping
风力发电控制以抑制区域间振荡
  • 批准号:
    0901213
  • 财政年份:
    2009
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant

相似国自然基金

基于术中实时影像的SAM(Segment anything model)开发AI指导房间隔穿刺位置决策的增强现实模型
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
  • 批准号:
    81771933
  • 批准年份:
    2017
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
基于Multilevel Model的雷公藤多苷致育龄女性闭经预测模型研究
  • 批准号:
    81503449
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
基于非齐性 Makov model 建立病证结合的绝经后骨质疏松症早期风险评估模型
  • 批准号:
    30873339
  • 批准年份:
    2008
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目

相似海外基金

Identification of candidate genes for quantitative traits and evaluation of genetic resource diversity of a novel model plant, Setaria, using NGS
利用NGS鉴定新型模式植物狗尾草数量性状候选基因及遗传资源多样性评价
  • 批准号:
    23K05279
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Identification and Estimation of the entry model of firms in the differentiated products oligopoly market.
差异化产品寡头垄断市场企业进入模式的识别与估计。
  • 批准号:
    23K01393
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Identification of mental disorder biomarkers using a body information-dependent decision-making model
使用身体信息依赖决策模型识别精神障碍生物标志物
  • 批准号:
    23KJ1293
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Identification of microbiota-dependent serum metabolites associated with immune activation using PD-1 deficient mice model
使用 PD-1 缺陷小鼠模型鉴定与免疫激活相关的微生物依赖的血清代谢物
  • 批准号:
    23K06603
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Using AI to improve our understanding of verbal confidence and to aid decision-making: Eyewitness lineup identification as a model case
使用人工智能提高我们对言语信心的理解并辅助决策:以目击者阵容识别为典型案例
  • 批准号:
    2241989
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Control Systems Engineering to Address the Problem of Weight Loss Maintenance: A System Identification Experiment to Model Behavioral & Psychosocial Factors Measured by Ecological Momentary Assessment
解决减肥维持问题的控制系统工程:行为建模的系统识别实验
  • 批准号:
    10749979
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
Generation of a mouse model of nociplastic pain and identification of therapeutic target molecules through analyzing brain mechanisms involved in it
生成伤害性疼痛小鼠模型并通过分析相关脑机制识别治疗靶分子
  • 批准号:
    23H03002
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Computational and machine learning methods for model reduction, uncertainty propagation, and parameter identification in fluid and solid mechanics
流体和固体力学中模型简化、不确定性传播和参数识别的计算和机器学习方法
  • 批准号:
    RGPIN-2021-02693
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Discovery Grants Program - Individual
Identification of Genetic Markers of Susceptibility to Intracellular Bacterial Infection Using the Collaborative Cross Mouse Model
使用协作交叉小鼠模型鉴定细胞内细菌感染易感性的遗传标记
  • 批准号:
    10672355
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
Identification of metabolic alterations during cortical development in a human cellular model for 22q11.2 deletion syndrome
22q11.2 缺失综合征人类细胞模型皮质发育过程中代谢变化的鉴定
  • 批准号:
    10552046
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了