III: Medium: Collaborative Research: Scaling Time Series Analytics to Massive Seismology Datasets

III:媒介:协作研究:将时间序列分析扩展到海量地震数据集

基本信息

项目摘要

This project will enable a team of computer scientists and earth scientists at the University of California-Riverside, the University of California-San Diego and the University of New Mexico to develop novel tools to search existing seismographic databases for subtle earthquakes that may have evaded detection. These more complete earthquake catalogues will allow more accurate hazard analysis and risk reduction. The intellectual merit of the proposed work is in creating novel data representations, definitions, algorithms (and ultimately, highly usable open-source code) that will allow the seismological community greatly to expand both the type and the scale of the analytics that they can perform, both offline and in real time. The broader impacts of this project results from the more comprehensive and complete earthquake catalogs created. These have the potential to affect multiple branches of earthquake science. For example, the more accurate hazard and risk models derived from the catalogs can be used by governments and private industry to plan for and mitigate economic and human losses, e.g., by mandating resilient construction and infrastructure, and by accurately assessing insured risk. In addition, the projects comprehensive educational and outreach activities have already been piloted on a small scale and include detailed plans to reach out to underserved communities at the K-12 and college levels, and to create grade-level appropriate teaching resources that exploit the natural interest most K-12 students have in the drama of earthquakes.Humans notice large earthquakes, but the frequently occurring smaller quakes caused by the constant slipping of fault lines typically go unnoticed, even by skilled seismologists with access to telemetry. However, these imperceptible quakes could help us understand the physical processes that trigger hazardous earthquakes, assisting in hazard-reduction efforts. Recently, a novel data structure called the Matrix Profile has emerged as a very promising technique for pattern discovery in large datasets. The PIs, an interdisciplinary team of computer scientists and seismologists, propose to investigate techniques to use Matrix Profile the scale up the size of datasets that can be investigated by 100X magnitude, to find 20X more earthquakes. The intellectual merit of this project will result in novel data representations, definitions, algorithms (and ultimately, highly usable open-source code) that will allow the seismological community to expand both the type and the scale of the analytics that they can perform. The broader impacts of this project are difficult to overstate. Comprehensive and complete earthquake catalogs are foundational to multiple branches of earthquake science, notably the physics of earthquake nucleation, hazard analysis and risk reduction. The hazard and risk models derived from them can be used by governments and private industry to plan for and mitigate economic and human losses, e.g. by mandating resilient construction and infrastructure, and by accurately assessing insured risk. The project’s comprehensive educational and outreach activities have already been piloted on a small scale and include detailed plans to reach out to under-served communities at the K-12 and college levels.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目将使加利福尼亚大学河滨分校、加利福尼亚大学圣地亚哥分校和新墨西哥大学的计算机科学家和地球科学家组成的团队能够开发新的工具来搜索现有的地震数据库,以寻找可能未被探测到的细微地震。这些更完整的地震目录将允许更准确的危害分析和降低风险。所提议的工作的智力价值在于创建了新颖的数据表示、定义、算法(以及最终高度可用的开源代码),这将允许地震学社区极大地扩展他们可以执行的分析的类型和规模,无论是离线还是实时。该项目的更广泛的影响源于创建了更全面和完整的地震目录。这些有可能影响地震科学的多个分支。例如,政府和私营企业可以使用从目录中得出的更准确的危害和风险模型来规划和减轻经济和人员损失,例如,通过强制实施具有复原力的建筑和基础设施,以及通过准确评估投保风险。此外,该项目的综合教育和推广活动已经在小范围内进行了试点,其中包括详细的计划,以接触到K-12和大学水平服务不足的社区,并创建适合年级的教学资源,利用大多数K-12学生对地震戏剧的自然兴趣。人类能注意到大地震,但由断层线不断滑动引起的频繁发生的小地震通常不会被注意到,即使是有遥测技术的熟练地震学家也不会注意到。然而,这些难以察觉的地震可以帮助我们了解引发危险地震的物理过程,有助于减少灾害的努力。最近,一种新的数据结构(称为Matrix Profile)作为一种非常有前途的技术出现在大型数据集的模式发现中。pi是一个由计算机科学家和地震学家组成的跨学科团队,他们建议研究使用矩阵剖面的技术,将可以研究100倍震级的数据集的规模扩大,以发现20倍以上的地震。这个项目的智力价值将导致新的数据表示、定义、算法(最终,高度可用的开源代码),这将允许地震学社区扩展他们可以执行的分析的类型和规模。这个项目的广泛影响怎么说都不为过。全面完整的地震目录是地震科学多个分支的基础,特别是地震成核物理、危害分析和风险降低。由此得出的危害和风险模型可被政府和私营企业用于规划和减轻经济和人员损失,例如,通过强制实施具有复原力的建筑和基础设施,以及通过准确评估投保风险。该项目的全面教育和推广活动已经在小规模试点,其中包括向K-12和大学水平服务不足的社区提供服务的详细计划。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Shearer其他文献

The fossil roots of continents
大陆的化石根源
  • DOI:
    10.1038/335011a0
  • 发表时间:
    1988-09-01
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Peter Shearer
  • 通讯作者:
    Peter Shearer
Slow waves in young basalts
年轻玄武岩中的慢波
  • DOI:
    10.1038/330312b0
  • 发表时间:
    1987-11-26
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Peter Shearer
  • 通讯作者:
    Peter Shearer
A mantle thermometer
地幔温度计
  • DOI:
    10.1038/356662a0
  • 发表时间:
    1992-04-23
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Peter Shearer
  • 通讯作者:
    Peter Shearer

Peter Shearer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Shearer', 18)}}的其他基金

Collaborative Research: Mantle dynamics and plate tectonics constrained by converted and reflected seismic wave imaging beneath hotspots
合作研究:热点下方转换和反射地震波成像约束的地幔动力学和板块构造
  • 批准号:
    2147923
  • 财政年份:
    2022
  • 资助金额:
    $ 17.77万
  • 项目类别:
    Standard Grant
Seismological Investigations of Earthquakes and Deep Earth Structure
地震和地球深层结构的地震学研究
  • 批准号:
    2123529
  • 财政年份:
    2021
  • 资助金额:
    $ 17.77万
  • 项目类别:
    Continuing Grant
Collaborative Research: Time Dependence of Seismic Parameters in Hawaii
合作研究:夏威夷地震参数的时间依赖性
  • 批准号:
    1925629
  • 财政年份:
    2019
  • 资助金额:
    $ 17.77万
  • 项目类别:
    Standard Grant
Imaging Upper-Mantle Structure under USArray using Long - Period Reflection Seismology
利用长周期反射地震学在 USArray 下对上地幔结构进行成像
  • 批准号:
    1829601
  • 财政年份:
    2018
  • 资助金额:
    $ 17.77万
  • 项目类别:
    Standard Grant
Seismological Investigations of Earthquakes and Deep Earth Structure
地震和地球深层结构的地震学研究
  • 批准号:
    1620251
  • 财政年份:
    2016
  • 资助金额:
    $ 17.77万
  • 项目类别:
    Continuing Grant
Analysis of Seismic Data from the USArray Project to Determine Crust and Uppermost Mantle Structure Beneath the United States
分析 USArray 项目的地震数据以确定美国下方的地壳和上地幔结构
  • 批准号:
    1358510
  • 财政年份:
    2014
  • 资助金额:
    $ 17.77万
  • 项目类别:
    Standard Grant
Collaborative Research: Characterizing fault zones at Kilauea and Mauna Loa volcanoes by large-scale mapping of earthquake stress drops and high precision locations
合作研究:通过地震应力降的大比例尺绘图和高精度位置来表征基拉韦厄火山和莫纳罗亚火山的断层带
  • 批准号:
    1045035
  • 财政年份:
    2011
  • 资助金额:
    $ 17.77万
  • 项目类别:
    Standard Grant
Seismological Investigations of Earthquakes and Deep Earth Structure
地震和地球深层结构的地震学研究
  • 批准号:
    1111111
  • 财政年份:
    2011
  • 资助金额:
    $ 17.77万
  • 项目类别:
    Continuing Grant
Analysis of Regional Phase Data from USArray
USArray 区域相位数据分析
  • 批准号:
    0950391
  • 财政年份:
    2010
  • 资助金额:
    $ 17.77万
  • 项目类别:
    Standard Grant
Upgrading of Shared Computing Equipment in Geophysics
地球物理共享计算设备升级
  • 批准号:
    0926762
  • 财政年份:
    2009
  • 资助金额:
    $ 17.77万
  • 项目类别:
    Standard Grant

相似海外基金

III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
  • 批准号:
    2420691
  • 财政年份:
    2024
  • 资助金额:
    $ 17.77万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
  • 批准号:
    2312865
  • 财政年份:
    2023
  • 资助金额:
    $ 17.77万
  • 项目类别:
    Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
  • 批准号:
    2312932
  • 财政年份:
    2023
  • 资助金额:
    $ 17.77万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
  • 批准号:
    2348169
  • 财政年份:
    2023
  • 资助金额:
    $ 17.77万
  • 项目类别:
    Continuing Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2415562
  • 财政年份:
    2023
  • 资助金额:
    $ 17.77万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
  • 批准号:
    2312501
  • 财政年份:
    2023
  • 资助金额:
    $ 17.77万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Knowledge discovery from highly heterogeneous, sparse and private data in biomedical informatics
合作研究:III:中:生物医学信息学中高度异构、稀疏和私有数据的知识发现
  • 批准号:
    2312862
  • 财政年份:
    2023
  • 资助金额:
    $ 17.77万
  • 项目类别:
    Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
  • 批准号:
    2312930
  • 财政年份:
    2023
  • 资助金额:
    $ 17.77万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
  • 批准号:
    2347592
  • 财政年份:
    2023
  • 资助金额:
    $ 17.77万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Graph Neural Networks for Heterophilous Data: Advancing the Theory, Models, and Applications
合作研究:III:媒介:异质数据的图神经网络:推进理论、模型和应用
  • 批准号:
    2406648
  • 财政年份:
    2023
  • 资助金额:
    $ 17.77万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了