Exciton Spectroscopy and Engineering in Strongly Correlated Electron Systems

强相关电子系统中的激子能谱和工程

基本信息

  • 批准号:
    2104833
  • 负责人:
  • 金额:
    $ 46.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-12-01 至 2024-11-30
  • 项目状态:
    已结题

项目摘要

Non-technical:Upon irradiation with light, an electron in a solid is excited to a state with higher energy, leaving behind a hole – a missing electron – in its initial state. The oppositely charged electron and hole experience electrostatic attraction and, in electrically insulating materials, can form an atom-like bound object dubbed an “exciton”. Excitons not only serve as a platform for studying atomic physics phenomena in a solid-state environment but are also central to the development of photonic and opto-electronic technologies. To date, excitons have largely been studied in conventional non-magnetic insulators where interactions between electrons are weak. But in theory, excitons can also exist in a class of materials called Mott-Hubbard insulators, where strong interactions immobilize electrons and can cause their intrinsic magnetic moments to adopt myriad ordered arrangements. Such an environment can endow excitons with highly unconventional properties, potentially leading to a new generation of highly tunable and multi-functional excitonic devices. Despite these opportunities, Mott-Hubbard excitons remain experimentally elusive. This project directly addresses this problem by deploying novel high-speed stroboscopic methods to probe the energetic, dynamical, and spatial characteristics of Mott-Hubbard excitons in a range of Mott insulating compounds. Products of this research are being incorporated into a broad outreach plan that targets retention of underrepresented and underprivileged groups in science. This includes developing an extensive teaching and internship program for high school students in the Pasadena School District and holding an annual workshop on Caltech campus for U.S. college level students-of-color interested in pursuing graduate research in STEM fields. Technical:Excitons in conventional rigid-band semiconductors are well described as Coulomb bound hydrogen-like electron-hole pairs. However, much less is understood about excitons in Mott insulators, which consist of holon-doublon pairs bound by both Coulombic and spin exchange interactions. The properties of these so-called Hubbard excitons (HEs), and how they are influenced by the complex electronic and magnetic orders often found in Mott insulators, remain open questions. The goals of this project are to experimentally observe HEs and to explore their energetic, dynamical, and spatial properties using a suite of ultrafast optical spectroscopic techniques operating in the terahertz frequency range. Research activities are divided into two major thrusts. Thrust 1 focuses on directly resolving HEs through intra-excitonic transition spectroscopy, and on systematically characterizing their dynamical behavior across Mott systems hosting different electronic and magnetic orders. Thrust 2 focuses on using optical high-harmonic generation to perform tomographic imaging of the spatial structure of HE orbitals. Strong field manipulation of HEs through field-induced tunneling ionization experiments will also be carried out. Establishing this fundamental understanding of HEs will pave the way for future opto-electronics applications that leverage strongly correlated materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性:在光照射下,固体中的电子被激发到具有更高能量的状态,在其初始状态下留下一个空穴-一个丢失的电子。带相反电荷的电子和空穴经历静电吸引,并且在电绝缘材料中,可以形成被称为“激子”的原子状束缚物体。激子不仅作为研究固态环境中原子物理现象的平台,而且也是光子和光电技术发展的核心。到目前为止,激子主要是在传统的非磁性绝缘体中研究的,其中电子之间的相互作用很弱。但在理论上,激子也可以存在于一类称为Mott-Hubbard绝缘体的材料中,在这种材料中,强烈的相互作用会束缚电子,并导致它们的固有磁矩采用无数的有序排列。这样的环境可以赋予激子高度非常规的性质,可能导致新一代的高度可调和多功能激子器件。尽管有这些机会,莫特-哈伯德激子在实验上仍然难以捉摸。该项目通过部署新型高速频闪方法来探测Mott绝缘化合物中Mott-Hubbard激子的能量,动力学和空间特性来直接解决这个问题。这项研究的成果正在被纳入一项广泛的外联计划,该计划的目标是留住科学界代表性不足和处境不利的群体。这包括为帕萨迪纳学区的高中生制定广泛的教学和实习计划,并在加州理工学院校园为有兴趣从事STEM领域研究生研究的美国大学生举办年度研讨会。技术:传统的刚性能带半导体中的激子被很好地描述为库仑束缚的类氢电子空穴对。然而,对莫特绝缘体中激子的了解要少得多,莫特绝缘体由库仑和自旋交换相互作用束缚的holon-doublon对组成。这些所谓的哈伯德激子(Hubbard excitons,HEs)的性质,以及它们如何受到莫特绝缘体中常见的复杂电子和磁序的影响,仍然是一个悬而未决的问题。该项目的目标是使用一套在太赫兹频率范围内运行的超快光学光谱技术来实验观察HE并探索其能量、动力学和空间特性。研究活动分为两大重点。推力1的重点是通过激子内跃迁光谱直接解析HEs,并系统地表征它们在Mott系统中的动力学行为,这些系统具有不同的电子和磁序。推力2的重点是使用光学高次谐波产生执行断层成像的HE轨道的空间结构。还将通过场致隧道电离实验对HEs进行强场操纵。建立对高性能电子器件的基本理解将为未来利用强相关材料的光电子应用铺平道路。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Hsieh其他文献

Modeling Heteroscedasticity in Daily Foreign-Exchange Rates
A New Approach to International Arbitrage Pricing
国际套利定价的新方法
  • DOI:
    10.1111/j.1540-6261.1993.tb05126.x
  • 发表时间:
    1993
  • 期刊:
  • 影响因子:
    8
  • 作者:
    Ravi Bansal;David Hsieh;S. Viswanathan
  • 通讯作者:
    S. Viswanathan
Hedge Funds: Performance, Risk, and Capital Formation
对冲基金:绩效、风险和资本形成
  • DOI:
    10.1111/j.1540-6261.2008.01374.x
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    8
  • 作者:
    William Fung;David Hsieh;T. Ramadorai;Narayan Naik
  • 通讯作者:
    Narayan Naik
Time-hidden magnetic order in a multi-orbital Mott insulator
多轨道莫特绝缘体中的时间隐藏磁序
  • DOI:
    10.1038/s41567-024-02752-1
  • 发表时间:
    2025-01-23
  • 期刊:
  • 影响因子:
    18.400
  • 作者:
    Xinwei Li;Iliya Esin;Youngjoon Han;Yincheng Liu;Hengdi Zhao;Honglie Ning;Cora Barrett;Jun-Yi Shan;Kyle Seyler;Gang Cao;Gil Refael;David Hsieh
  • 通讯作者:
    David Hsieh
Performance Characteristics of Hedge Funds and Commodity Funds: Natural vs. Spurious Biases
对冲基金和商品基金的业绩特征:自然偏差与虚假偏差

David Hsieh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Ultrafast Action Spectroscopy of Hybrid States for Soft Optoelectronic Materials Engineering
用于软光电材料工程的杂化态超快作用光谱
  • 批准号:
    EP/X030822/1
  • 财政年份:
    2023
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Research Grant
Equipment: MRI: Track 1 Acquisition of an X-ray Photoelectron Spectroscopy Instrument for Materials Research in Science and Engineering
设备: MRI:轨道 1 采购用于科学与工程材料研究的 X 射线光电子能谱仪器
  • 批准号:
    2320031
  • 财政年份:
    2023
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Standard Grant
Raman Spectroscopy for Chemistry and Engineering
化学与工程拉曼光谱
  • 批准号:
    RTI-2023-00093
  • 财政年份:
    2022
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Research Tools and Instruments
Demonstration of Floquet engineering in quantum materials via time- and angle-resolved photoemission spectroscopy
通过时间和角度分辨光电子能谱演示量子材料中的 Floquet 工程
  • 批准号:
    580211-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Alliance Grants
Biotechnology and Bioprocess Engineering Applications of Raman Spectroscopy
拉曼光谱的生物技术和生物过程工程应用
  • 批准号:
    RGPIN-2016-05478
  • 财政年份:
    2021
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Discovery Grants Program - Individual
Laser-Induced Breakdown Spectroscopy for Environmental Engineering Applications
激光诱导击穿光谱在环境工程中的应用
  • 批准号:
    563427-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 46.5万
  • 项目类别:
    University Undergraduate Student Research Awards
Exciton engineering in molecular dimers using scanning tunneling luminescence spectroscopy
使用扫描隧道发光光谱进行分子二聚体的激子工程
  • 批准号:
    20K22488
  • 财政年份:
    2020
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Biotechnology and Bioprocess Engineering Applications of Raman Spectroscopy
拉曼光谱的生物技术和生物过程工程应用
  • 批准号:
    RGPIN-2016-05478
  • 财政年份:
    2020
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Force spectroscopy enabled multivalent glycan-binding protein engineering
职业生涯:力光谱使多价聚糖结合蛋白工程成为可能
  • 批准号:
    1846797
  • 财政年份:
    2019
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Continuing Grant
Biotechnology and Bioprocess Engineering Applications of Raman Spectroscopy
拉曼光谱的生物技术和生物过程工程应用
  • 批准号:
    RGPIN-2016-05478
  • 财政年份:
    2019
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了