Determining Pathways for Improved Oxidation Resistance in Compositionally Complex Alloys
确定提高成分复杂合金的抗氧化性的途径
基本信息
- 批准号:2105364
- 负责人:
- 金额:$ 32.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARYMetal alloys are widely used as structural materials in many high temperature applications such as power plants, aircraft engines, and rocket motors. Conventional alloys are typically made of one or two primary alloying elements with addition of other low-concentration alloying elements to improve alloy properties. Recently, high entropy alloys, also known as complex concentrated alloys, have received significant interest due to their novel structures and properties. Unlike conventional alloys, high entropy alloys consist of five or more principal alloying elements in nearly equal concentrations. These concentrated alloys exhibit outstanding physical properties compared to conventional alloys including high-temperature strength, corrosion resistance, and radiation tolerance, though the reasons why are poorly understood to date. This project investigates the fundamental mechanisms of high temperature oxidation in high entropy alloys and establishes the roles of chemistry and microstructure in controlling oxidation behavior. Through this project a diverse group of students and scientists, including women and students from Historically Black Colleges and Universities, will be trained to test, characterize, model and predict the oxidation behavior of high entropy alloys using computational and experimental tools. This project will advance our goals towards developing materials with improved oxidation resistance which will contribute towards more fuel efficient and longer lasting power plants, improved jet and rocket engines, and safer nuclear power plants.TECHNICAL SUMMARYHigh entropy alloys (HEAs) and the related complex concentrated alloys (CCAs) are garnering increased attention from the researchers worldwide searching for alternatives to conventional/legacy materials. Oxidation limits the application of many advanced materials in high temperature environments and there have been very few investigations of the oxidation behavior of high entropy alloys. Most of those studies centered on as-fabricated (e.g., as-cast, as-sintered, etc.) alloys without addressing the influences of microstructural parameters (i.e., grain/phase size, morphology, or distribution). This research will use a coupled experimental and computational approach to establish how oxidation occurs in AlCoCrFeNi HEAs/CCAs and will provide a framework that can be used to design and fabricate HEAs/CCAs exhibiting enhanced oxidation resistance. This research will use CALPHAD based thermodynamic modeling to predict phase equilibria and oxidation products and will use TC-PRISMA complemented with DICTRA to simulate phase precipitation due to oxidation. The simulated microstructures and phases will be validated using cross-correlative analytical electron microscopy and Atom Probe Tomography techniques to quantify solute segregation behavior and the influences of phase distribution and grain boundary character on oxidation. This research will contribute towards the development, improvement and validation of high-quality thermodynamic and kinetic databases and will also provide necessary technical insights to facilitate the development of oxidation resistant HEAs for use in high temperature structural applications. The graduate student budgeted for the project will employ the principles of metallurgical and ceramic engineering, thin film science and materials processing, microstructural characterization, and materials selection. They will benefit from this project by being involved in advanced research on the fabrication, chemical and microstructural characterization, and modeling of reacting materials using state-of-the-art analytical and computational tools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
金属合金作为结构材料广泛应用于许多高温应用,如发电厂、飞机发动机和火箭发动机。传统合金通常由一种或两种主要合金元素制成,并添加其他低浓度合金元素以改善合金性能。近年来,高熵合金,也称为复杂浓缩合金,由于其新颖的结构和性能而引起了人们的极大兴趣。与传统合金不同,高熵合金由五种或五种以上的主要合金元素以几乎相等的浓度组成。与传统合金相比,这些浓缩合金表现出优异的物理性能,包括高温强度、耐腐蚀性和耐辐射性,尽管迄今为止人们对其原因知之甚少。本项目研究了高熵合金高温氧化的基本机理,确定了化学和微观结构在控制氧化行为中的作用。通过这个项目,一群不同的学生和科学家,包括来自传统黑人学院和大学的女性和学生,将接受训练,使用计算和实验工具测试、表征、建模和预测高熵合金的氧化行为。这个项目将推进我们的目标,即开发具有更好抗氧化性的材料,这将有助于提高燃料效率和更持久的发电厂,改进喷气和火箭发动机,以及更安全的核电站。高熵合金(HEAs)和相关的复杂浓缩合金(CCAs)越来越受到世界范围内寻找传统/遗留材料替代品的研究人员的关注。氧化限制了许多先进材料在高温环境中的应用,对高熵合金的氧化行为的研究很少。这些研究大多集中在制造态(如铸造态、烧结态等)合金上,而没有解决微观结构参数(即晶粒/相尺寸、形貌或分布)的影响。本研究将采用实验和计算相结合的方法来确定AlCoCrFeNi HEAs/CCAs中氧化是如何发生的,并将提供一个框架,用于设计和制造具有增强抗氧化性的HEAs/CCAs。本研究将使用基于CALPHAD的热力学模型来预测相平衡和氧化产物,并将使用TC-PRISMA和DICTRA来模拟氧化引起的相沉淀。模拟的显微组织和相将使用交叉相关分析电子显微镜和原子探针断层扫描技术进行验证,以量化溶质偏析行为以及相分布和晶界特征对氧化的影响。这项研究将有助于开发、改进和验证高质量的热力学和动力学数据库,并将提供必要的技术见解,以促进用于高温结构应用的抗氧化HEAs的开发。该项目预算的研究生将运用冶金和陶瓷工程、薄膜科学和材料加工、微观结构表征和材料选择的原理。他们将从这个项目中受益,参与先进的制造、化学和微观结构表征研究,以及使用最先进的分析和计算工具对反应材料进行建模。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The effect of annealing on the microstructures and oxidation behaviors of AlCoCrFeNi complex concentrated alloys
退火对AlCoCrFeNi复合浓合金显微组织和氧化行为的影响
- DOI:10.1016/j.jallcom.2023.170391
- 发表时间:2023
- 期刊:
- 影响因子:6.2
- 作者:Butler, Todd M.;Pavel, Michael J.;Weaver, Mark L.
- 通讯作者:Weaver, Mark L.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Weaver其他文献
Do Owners and Managers Really Differ?
业主和管理者真的有区别吗?
- DOI:
10.5367/ijei.2015.0190 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
M. Lorenz;J. E. Gamble;D. L. Turnipseed;Mark Weaver - 通讯作者:
Mark Weaver
Fitness, persistence, and responsiveness of a genetically engineered strain of <em>Trichoderma virens</em> in soil mesocosms
- DOI:
10.1016/j.apsoil.2004.11.006 - 发表时间:
2005-06-01 - 期刊:
- 影响因子:
- 作者:
Mark Weaver;Elena Vedenyapina;Charles M. Kenerley - 通讯作者:
Charles M. Kenerley
Mark Weaver的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Weaver', 18)}}的其他基金
Opportunities in Experiment, Computation, Theory and AI Virtual July 2021 Workshop with Focus on Metals and Alloys
2021 年 7 月实验、计算、理论和人工智能虚拟研讨会机会,重点关注金属和合金
- 批准号:
2132475 - 财政年份:2021
- 资助金额:
$ 32.45万 - 项目类别:
Standard Grant
Fundamental Influences of Grain Size on Oxidation Behavior of Nanocrystalline Alumina-Forming Alloys
晶粒尺寸对纳米晶氧化铝合金氧化行为的基本影响
- 批准号:
1411280 - 财政年份:2014
- 资助金额:
$ 32.45万 - 项目类别:
Standard Grant
53rd International Field Emission Society (IFES) Conference and Pre-meeting Tutorial; University of Alabama, Tuscaloosa, AL; May 2012
第 53 届国际场发射学会 (IFES) 会议和会前教程;
- 批准号:
1230970 - 财政年份:2012
- 资助金额:
$ 32.45万 - 项目类别:
Standard Grant
A Novel Containerless Melting and Casting Process for Structural Cast Magnesium Alloys
一种新型结构铸造镁合金无容器熔炼铸造工艺
- 批准号:
0856320 - 财政年份:2009
- 资助金额:
$ 32.45万 - 项目类别:
Standard Grant
Fundamental Materials Dynamics of Protective Overlay Coatings for High Temperature Structural Materials
高温结构材料保护涂层的基础材料动力学
- 批准号:
0504950 - 财政年份:2005
- 资助金额:
$ 32.45万 - 项目类别:
Continuing Grant
Acquisition of a Field Emission Scanning Electron Microscope
购买场发射扫描电子显微镜
- 批准号:
0321180 - 财政年份:2003
- 资助金额:
$ 32.45万 - 项目类别:
Standard Grant
Dendrimer-Based Nanocomposites for Tribological Applications
用于摩擦学应用的基于树枝状聚合物的纳米复合材料
- 批准号:
0324601 - 财政年份:2003
- 资助金额:
$ 32.45万 - 项目类别:
Standard Grant
CAREER: Fundamental Micromechanics and Materials Dynamics of Thermal Barrier Coating Systems Containing Multiple Layers
职业:包含多层的热障涂层系统的基本微观力学和材料动力学
- 批准号:
9984899 - 财政年份:2000
- 资助金额:
$ 32.45万 - 项目类别:
Standard Grant
相似海外基金
Pathways to improved polyene antimicrobial agents (PIPA)
改进多烯抗菌剂 (PIPA) 的途径
- 批准号:
BB/X015645/1 - 财政年份:2023
- 资助金额:
$ 32.45万 - 项目类别:
Research Grant
eRImote - Pathways to Improved Resilience through Remote/Digital Access for European Research Infrastructures
eRImote - 通过欧洲研究基础设施的远程/数字访问提高弹性的途径
- 批准号:
10045716 - 财政年份:2022
- 资助金额:
$ 32.45万 - 项目类别:
EU-Funded
Pathways to improved adolescent mental health via an economic and gender equality intervention with conflict affected families
通过对受冲突影响的家庭进行经济和性别平等干预来改善青少年心理健康的途径
- 批准号:
10570855 - 财政年份:2021
- 资助金额:
$ 32.45万 - 项目类别:
Methods for improved detection of activated molecular pathways in cancer
改进癌症中激活分子途径的检测方法
- 批准号:
10574615 - 财政年份:2021
- 资助金额:
$ 32.45万 - 项目类别:
Methods for improved detection of activated molecular pathways in cancer
改进癌症中激活分子途径的检测方法
- 批准号:
10380586 - 财政年份:2021
- 资助金额:
$ 32.45万 - 项目类别:
Pathways to improved adolescent mental health via an economic and gender equality intervention with conflict affected families
通过对受冲突影响的家庭进行经济和性别平等干预来改善青少年心理健康的途径
- 批准号:
10374385 - 财政年份:2021
- 资助金额:
$ 32.45万 - 项目类别:
Discovering new pathways to improved biotherapeutic treatment of snakebite envenoming.
发现改善蛇咬伤中毒生物治疗的新途径。
- 批准号:
nhmrc : GNT1109575 - 财政年份:2017
- 资助金额:
$ 32.45万 - 项目类别:
Early Career Fellowships
Discovering new pathways to improved biotherapeutic treatment of snakebite envenoming.
发现改善蛇咬伤中毒生物治疗的新途径。
- 批准号:
nhmrc : 1109575 - 财政年份:2017
- 资助金额:
$ 32.45万 - 项目类别:
Early Career Fellowships
Dual targeting of Myc and apoptosis pathways for improved blood cancer treatment outcomes
Myc 和细胞凋亡途径的双重靶向可改善血癌治疗结果
- 批准号:
nhmrc : 1122829 - 财政年份:2017
- 资助金额:
$ 32.45万 - 项目类别:
Project Grants
Improved identification of drug targets by data warehousing and simulations of signal transduction pathways
通过数据仓库和信号转导途径模拟改进药物靶标的识别
- 批准号:
17K07268 - 财政年份:2017
- 资助金额:
$ 32.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)