Understanding Grain Boundary Multiplicity and Its Role in Deformation Mechanisms of Nanocrystalline Metals

了解晶界多重性及其在纳米晶金属变形机制中的作用

基本信息

  • 批准号:
    2105328
  • 负责人:
  • 金额:
    $ 46.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL SUMMARYA grain is a crystallite where the atoms are periodically arranged. The interface between differently oriented grains, i.e., grain boundaries, strongly influences, if not determine, many mechanical and physical properties of materials, such as strength, ductility (material’s ability to bend before breaking), and resistance to radiation damage. Increasing scientific data suggests that grain boundaries in metals can have many different kinds of atomic arrangements (also known as multiplicity), and the transition between them leads to significant property changes. If we have a better understanding of grain boundary multiplicity and its structure-property relationship, scientists and engineers can devise synthesis strategies to tailor grain boundaries towards enhanced mechanical performance of nanostructured metals. In this project, Dr. Penghui Cao and Dr. Huolin Xin at UC Irvine will use forefront computational modeling and electron microscopy tools to study grain boundary multiplicity at the atomic level and reveal its critical role in determining how nanocrystalline metals deform. A fundamental understanding of grain boundary multiplicity could facilitate the design of engineering metals with desirable mechanical properties for structural applications, such as aerospace and nuclear energy systems. The project-based education plan aims to attract the participation of high school students from diverse backgrounds and thereby motivate and enable underrepresented minorities to pursue STEM careers.TECHNICAL SUMMARYThis project centers on revealing the 3D atomic structure of grain boundaries and fundamentally understanding how grain boundary structure multiplicity influences plastic deformation mechanisms of nanostructured metals. Scientifically, we hypothesize that the plastic deformation mechanisms in nanocrystalline metals can be tuned by tailoring grain boundary multiplicity. To test this central hypothesis, we propose research tasks combining atomistic simulation, reaction pathway simulations, theoretical modeling, electron tomography, and in-situ transmission electron microscopy experiments. This integrated computational and experimental study aims to address four major questions: (1) How to determine the 3D atomic structure of grain boundaries, revealing boundary defects, structure units, and multiplicity? (2) How do grain boundary defects and multiplicity influence mobility and migration mechanisms of grain boundaries? (3) Is it possible to control plastic deformation by tailoring grain boundary state and structure multiplicity, which results in enhanced plasticity and ductility in nanocrystalline metals? (4) What are the new deformation mechanisms which can be enabled by defective grain boundary or transformed boundary? The physical insights gained from this research will advance the exploitation of structure-property relationships in nanostructured metals, laying the groundwork for effective tailoring of mechanical behaviors through controlling structure, multiplicity, crystallographic distribution of boundaries.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术概述晶粒是原子周期性排列的微晶。不同取向的晶粒之间的界面,即, 晶界,强烈影响,如果不是决定,许多机械和物理性能的材料,如强度,延展性(材料的能力,弯曲之前,打破),和抗辐射损伤。越来越多的科学数据表明,金属中的晶界可以有许多不同种类的原子排列(也称为多重性),它们之间的过渡会导致显着的性质变化。如果我们有一个更好的理解晶界的多样性和它的结构与性能的关系,科学家和工程师可以设计合成策略,以适应增强纳米结构金属的机械性能的晶界。在这个项目中,加州大学欧文分校的Penghui Cao博士和Huolin Xin博士将使用最前沿的计算建模和电子显微镜工具来研究原子水平上的晶界多重性,并揭示其在确定纳米晶金属如何变形方面的关键作用。 对晶界多样性的基本理解可以促进具有理想机械性能的工程金属的设计,用于结构应用,如航空航天和核能系统。该项目旨在吸引来自不同背景的高中生参与,从而激励并使代表性不足的少数民族能够从事STEM职业。技术概要本项目以揭示晶界的3D原子结构为中心,从根本上理解晶界结构的多样性如何影响纳米结构金属的塑性变形机制。科学上,我们假设纳米晶金属的塑性变形机制可以通过调整晶界的多样性来调整。为了验证这一中心假设,我们提出了研究任务相结合的原子模拟,反应途径模拟,理论建模,电子断层扫描,和原位透射电子显微镜实验。本研究的目的是解决四个主要问题:(1)如何确定晶界的三维原子结构,揭示边界缺陷,结构单元和多重性?(2)晶界缺陷和多重性如何影响晶界的迁移率和迁移机制?(3)是否有可能通过调整晶界状态和结构多样性来控制塑性变形,从而提高纳米晶金属的塑性和延展性?(4)有缺陷的晶界或转变的晶界能产生哪些新的变形机制?从这项研究中获得的物理见解将促进纳米结构金属的结构-性能关系的开发,为通过控制结构,多重性,边界的晶体学分布来有效定制机械行为奠定基础。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估而被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Strong and ductile refractory high-entropy alloys with super formability
  • DOI:
    10.1016/j.actamat.2022.118602
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Cheng Zhang;Haoren Wang;Xinyi Wang;Yuanbo T. Tang;Qin Yu;Chaoyi Zhu;Mingjie Xu;Shiteng Zhao;Rui Kou;Xin Wang;B. E. MacDonald;R. Reed;K. Vecchio;P. Cao;T. Rupert;E. Lavernia
  • 通讯作者:
    Cheng Zhang;Haoren Wang;Xinyi Wang;Yuanbo T. Tang;Qin Yu;Chaoyi Zhu;Mingjie Xu;Shiteng Zhao;Rui Kou;Xin Wang;B. E. MacDonald;R. Reed;K. Vecchio;P. Cao;T. Rupert;E. Lavernia
Strength softening mitigation in bimodal structured metals
  • DOI:
    10.1063/5.0075475
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Han Wang;P. Cao
  • 通讯作者:
    Han Wang;P. Cao
Direct Observation of Nucleation and Growth Behaviors of Lithium by In Situ Electron Microscopy
  • DOI:
    10.1021/acsenergylett.3c00180
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    22
  • 作者:
    Chunyang Wang;Han Wang;L. Tao;Xinyi Wang;P. Cao;Feng Lin;Huolin L. Xin
  • 通讯作者:
    Chunyang Wang;Han Wang;L. Tao;Xinyi Wang;P. Cao;Feng Lin;Huolin L. Xin
Structural heterogeneity governing deformability of metallic glass
  • DOI:
    10.1016/j.matt.2023.01.016
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    18.9
  • 作者:
    Youran Hong;Han Wang;Xing Li;Li Zhong;Han-Ting Chen;Ze Zhang;P. Cao;R. Ritchie;Jiangwei Wang
  • 通讯作者:
    Youran Hong;Han Wang;Xing Li;Li Zhong;Han-Ting Chen;Ze Zhang;P. Cao;R. Ritchie;Jiangwei Wang
Fracture universality in amorphous nanowires
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Penghui Cao其他文献

Electrospinning-hot pressing technique for the fabrication of thermal and electrical storage membranes and its applications
  • DOI:
    10.1007/s12613-024-2842-7
  • 发表时间:
    2024-08-28
  • 期刊:
  • 影响因子:
    7.200
  • 作者:
    Panpan Che;Baoshan Xie;Penghui Cao;Youfu Lv;Daifei Liu;Huali Zhu;Xianwen Wu;Zhangxing He;Jian Chen;Chuanchang Li
  • 通讯作者:
    Chuanchang Li
Effect of changes in life-related factors on mood status and life quality of methadone maintenance therapy (MMT) patients after withdrawal from MMT
美沙酮维持治疗(MMT)患者退出MMT后生活相关因素变化对情绪状态及生活质量的影响
Disease-specific suppressive granulocytes participate in glioma progression
  • DOI:
    10.1016/j.celrep.2024.115014
  • 发表时间:
    2024-12-24
  • 期刊:
  • 影响因子:
  • 作者:
    Jiarui Zhao;Di Wu;Jiaqi Liu;Yang Zhang;Chunzhao Li;Weichen Zhao;Penghui Cao;Shixuan Wu;Mengyuan Li;Wenlong Li;Ying Liu;Yingying Huang;Ying Cao;Yiwen Sun;Ence Yang;Nan Ji;Jing Yang;Jian Chen
  • 通讯作者:
    Jian Chen
Highly tailorable thermomechanical properties of nanograined silicon: Importance of grain size and grain anisotropy
纳米晶硅的高度可定制的热机械性能:晶粒尺寸和晶粒各向异性的重要性
  • DOI:
    10.1063/5.0185911
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Jiahui Cao;Han Wang;Laia Ferrer;Penghui Cao;Jaeho Lee
  • 通讯作者:
    Jaeho Lee
Novel ternary inorganic phase change gels for cold energy storage
  • DOI:
    10.1016/j.est.2024.113482
  • 发表时间:
    2024-10-15
  • 期刊:
  • 影响因子:
  • 作者:
    Aochang Zhu;Baoshan Xie;Penghui Cao;Xikang Xie;Jianbo Li;Yuanxin He;Chuanchang Li
  • 通讯作者:
    Chuanchang Li

Penghui Cao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

水稻Big Grain3 通过调控细胞分裂素转运调节籽粒大小
  • 批准号:
    2019JJ50243
  • 批准年份:
    2019
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
  • 批准号:
    31972875
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Characterization and understanding of point defect evolution during corrosion-induced grain boundary migration
职业:腐蚀引起的晶界迁移过程中点缺陷演化的表征和理解
  • 批准号:
    2145455
  • 财政年份:
    2022
  • 资助金额:
    $ 46.74万
  • 项目类别:
    Continuing Grant
CAREER: Understanding Grain Boundary Strength via Adaptive Electron Backscatter Diffraction and Multiscale Analysis
职业:通过自适应电子背散射衍射和多尺度分析了解晶界强度
  • 批准号:
    2043264
  • 财政年份:
    2021
  • 资助金额:
    $ 46.74万
  • 项目类别:
    Continuing Grant
Understanding stress-oxidation interaction on grain boundary failure: in situ microscale crack propagation experiments
了解应力-氧化相互作用对晶界失效的影响:原位微尺度裂纹扩展实验
  • 批准号:
    418649505
  • 财政年份:
    2019
  • 资助金额:
    $ 46.74万
  • 项目类别:
    Research Grants
Multiscale simulations toward understanding effects of amorphous grain boundary on coercivity in Nd-Fe-B magnets
多尺度模拟了解非晶晶界对 Nd-Fe-B 磁体矫顽力的影响
  • 批准号:
    409656180
  • 财政年份:
    2018
  • 资助金额:
    $ 46.74万
  • 项目类别:
    Research Grants
GOALI: Understanding Light-weight Transparent Ceramic Mechanical Response: From Single Grain Boundary to Bulk Material
GOALI:了解轻质透明陶瓷机械响应:从单晶界到散装材料
  • 批准号:
    1825466
  • 财政年份:
    2018
  • 资助金额:
    $ 46.74万
  • 项目类别:
    Standard Grant
Essential understanding of solute segregation at grain boundary in iron alloys by considering boundary coherency
通过考虑边界相干性对铁合金晶界溶质偏析的基本理解
  • 批准号:
    17K14840
  • 财政年份:
    2017
  • 资助金额:
    $ 46.74万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Understanding grain boundary segregation - a route to developing new advanced engineering materials
了解晶界偏析——开发新型先进工程材料的途径
  • 批准号:
    DP120100206
  • 财政年份:
    2012
  • 资助金额:
    $ 46.74万
  • 项目类别:
    Discovery Projects
New Approaches to Understanding Grain Boundary Chemistry
理解晶界化学的新方法
  • 批准号:
    DP0770504
  • 财政年份:
    2007
  • 资助金额:
    $ 46.74万
  • 项目类别:
    Discovery Projects
CAREER: Understanding Elevated-Temperature Grain Boundary Deformation Processes of High-Temperature Structural Alloys through Grain Boundary Engineering
职业:通过晶界工程了解高温结构合金的高温晶界变形过程
  • 批准号:
    0533954
  • 财政年份:
    2005
  • 资助金额:
    $ 46.74万
  • 项目类别:
    Continuing Grant
CAREER: Understanding Elevated-Temperature Grain Boundary Deformation Processes of High-Temperature Structural Alloys through Grain Boundary Engineering
职业:通过晶界工程了解高温结构合金的高温晶界变形过程
  • 批准号:
    0134789
  • 财政年份:
    2002
  • 资助金额:
    $ 46.74万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了