Collaborative Research: CNS Core: Medium: Dynamic Data-driven Systems - Theory and Applications

合作研究:CNS 核心:媒介:动态数据驱动系统 - 理论与应用

基本信息

  • 批准号:
    2106027
  • 负责人:
  • 金额:
    $ 18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Modern computer systems must be continually optimized in a data-driven manner to maintain performance, even as their deployment and workload environments change. This holds for traditional systems like content delivery networks and emerging architectures such as edge/cloud systems. The design of dynamic data-driven systems requires both theoretical advancements and new systems architectures. A key challenge is a tradeoff between optimality, i.e., choosing an optimal deployment for the current environment in terms of performance and/or cost, and smoothness, i.e., ensuring that the deployment changes are not too costly at any point. This project seeks to develop tools at the intersection of machine learning and optimization that enable systems to balance between optimality and smoothness. Further, this project deploys and empirically evaluates these tools in the context of 360 video streaming as a representative case study. Smoothness is not a traditional system performance measure, and so it is typically enforced only in ad hoc ways by existing systems. However, it is a crucial consideration for systems that seek to continuously optimize their configuration since the switching costs associated with changing configurations can be significant. Managing the tradeoff between optimality and smoothness in a rigorous fashion can lead to dramatic improvements; however, it is challenging since it requires a robust data-driven design that can determine whether it is worth incurring a switching cost in the present, without knowledge of the future environment. This project develops analytic tools that enable the design of algorithms for dynamic systems that balance optimality and smoothness through the integration of data-driven and optimization approaches. There are also planned test-bed deployment activities for 360 video streaming. The project will provide new foundational tools for the design of dynamic systems across multiple application areas. While we choose video streaming as our target application, the proposed fundamental research is applicable much more broadly. Notably, this project broadens the participation of underrepresented groups in STEM areas through programs at both K-12 and undergraduate levels. Planned activities include developing accelerated mathematics programs for middle-school students, summer programs for middle-school and high-school students, and summer research programs for undergraduate students. This is a collaborative project with investigators from the University of Massachusetts Amherst, California Institute of Technology, and the State University of New York at Stony Brook. The results of this project will be maintained on the project website at https://groups.cs.umass.edu/hajiesmaili/soco/. These will include technical reports of the research findings, software prototypes of the algorithms designed, datasets, and experimental results collected for the 360 video streaming experiments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代计算机系统必须以数据驱动的方式不断优化,以保持性能,即使其部署和工作负载环境发生变化。这适用于内容交付网络等传统系统和边缘/云系统等新兴架构。动态数据驱动系统的设计需要理论上的进步和新的系统架构。一个关键的挑战是最优性之间的权衡,即,在性能和/或成本以及平滑性方面为当前环境选择最佳部署,即,确保部署变化在任何时候都不会花费太多。该项目旨在开发机器学习和优化交叉点的工具,使系统能够在最优性和平滑性之间取得平衡。此外,该项目部署和经验评估这些工具的背景下,360视频流作为一个代表性的案例研究。平滑度不是传统的系统性能度量,因此它通常仅由现有系统以特定方式强制执行。然而,对于寻求持续优化其配置的系统来说,这是一个至关重要的考虑因素,因为与改变配置相关联的切换成本可能很大。以严格的方式管理最优性和平滑性之间的权衡可以带来巨大的改进;然而,这是具有挑战性的,因为它需要一个强大的数据驱动设计,可以确定是否值得在当前产生切换成本,而不知道未来的环境。该项目开发分析工具,使动态系统的算法设计,通过数据驱动和优化方法的集成平衡最优性和平滑性。此外,还计划为360视频流进行测试台部署活动。该项目将为多个应用领域的动态系统设计提供新的基础工具。虽然我们选择视频流作为我们的目标应用,但所提出的基础研究适用范围更广。值得注意的是,该项目通过K-12和本科水平的课程扩大了STEM领域代表性不足的群体的参与。计划的活动包括为中学生开发加速数学课程,为初中和高中学生开发暑期课程,为本科生开发暑期研究课程。这是一个与来自马萨诸塞州阿默斯特大学、加州理工学院和斯托尼布鲁克的纽约州立大学的研究人员合作的项目。该项目的结果将在项目网站https://groups.cs.umass.edu/hajiesmaili/soco/上公布。其中包括研究成果的技术报告、设计算法的软件原型、数据集以及为360视频流实验收集的实验结果。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deep Learning-Assisted Online Task Offloading for Latency Minimization in Heterogeneous Mobile Edge
  • DOI:
    10.1109/tmc.2023.3285882
  • 发表时间:
    2024-05
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Yu Liu;Yingling Mao;Z. Liu;Yuanyuan Yang
  • 通讯作者:
    Yu Liu;Yingling Mao;Z. Liu;Yuanyuan Yang
Applied Online Algorithms with Heterogeneous Predictors
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jessica Maghakian;Russell Lee;M. Hajiesmaili;Jian Li;R. Sitaraman;Zhenhu Liu
  • 通讯作者:
    Jessica Maghakian;Russell Lee;M. Hajiesmaili;Jian Li;R. Sitaraman;Zhenhu Liu
Online Container Scheduling for Data-intensive Applications in Serverless Edge Computing
  • DOI:
    10.1109/infocom53939.2023.10229034
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaojun Shang;Yingling Mao;Yu Liu;Yaodong Huang;Zhen Liu;Yuanyuan Yang
  • 通讯作者:
    Xiaojun Shang;Yingling Mao;Yu Liu;Yaodong Huang;Zhen Liu;Yuanyuan Yang
Energy-Aware Online Task Offloading and Resource Allocation for Mobile Edge Computing
Joint Task Offloading and Resource Allocation in Heterogeneous Edge Environments
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhenhua Liu其他文献

Copper-catalyzed C–N bond formation with imidazo[1,2-a]pyridines
铜催化咪唑并[1,2-a]吡啶形成 C–N 键
  • DOI:
    10.1039/c8ob01853g
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kai Sun;Shiqiang Mu;Zhenhua Liu;Ranran Feng;Yali Li;Kui Pang;Bing Zhang
  • 通讯作者:
    Bing Zhang
From Darkness to Light: Pretargeted Radionuclide Imaging Driven by Tetrazine Bioorthogonal Chemistry
从黑暗到光明:四嗪生物正交化学驱动的预定位放射性核素成像
Experimental research on boiling heat transfer characteristics of compact staggered tube bundles in reduced pressures
Estimation of the homoplasmy degree for transplastomic tobacco using quantitative real-time PCR
使用定量实时 PCR 估计转质体烟草的同质性程度
  • DOI:
    10.1007/s00217-010-1265-z
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Huifeng Shen;Bingjun Qian;Litao Yang;W. Liang;Weiwei Chen;Zhenhua Liu;Dabing Zhang
  • 通讯作者:
    Dabing Zhang
An Asymptotic Formula in Number Theory
数论中的渐近公式
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhenhua Liu;Z. Dai
  • 通讯作者:
    Z. Dai

Zhenhua Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhenhua Liu', 18)}}的其他基金

Collaborative Research: CNS Core: Small: Optimizing Large-Scale Heterogeneous ML Platforms
合作研究:CNS Core:小型:优化大规模异构机器学习平台
  • 批准号:
    2146909
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
CAREER: An adaptive framework to accelerate real-time workloads in heterogeneous and reconfigurable environments
职业:一个自适应框架,可在异构和可重新配置的环境中加速实时工作负载
  • 批准号:
    2046444
  • 财政年份:
    2021
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
NeTS: Small: Collaborative Research: Enabling Application-Level Performance Predictability in Public Clouds
NeTS:小型:协作研究:在公共云中实现应用程序级性能可预测性
  • 批准号:
    1617698
  • 财政年份:
    2016
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
CRII: NeTS: Enabling Demand Response from Cloud Data Centers -- from Sustainable IT to IT for Sustainability
CRII:NeTS:实现云数据中心的需求响应——从可持续 IT 到 IT 促进可持续发展
  • 批准号:
    1464388
  • 财政年份:
    2015
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
  • 批准号:
    2345339
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2230945
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
  • 批准号:
    2225578
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
  • 批准号:
    2406598
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
  • 批准号:
    2418188
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
  • 批准号:
    2242503
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
  • 批准号:
    2343959
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
  • 批准号:
    2343863
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2341378
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Innovating Volumetric Video Streaming with Motion Forecasting, Intelligent Upsampling, and QoE Modeling
合作研究:CNS 核心:中:通过运动预测、智能上采样和 QoE 建模创新体积视频流
  • 批准号:
    2409008
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了