Switching Control with Minimal Data

用最少的数据切换控制

基本信息

项目摘要

This grant will allow breaking new ground in our understanding of the minimal amount of data required for solving control problems. For a given control objective, a modern control designer is faced not just with the task of developing a control algorithm, but also with deciding whether the objective is achievable with the available data, or with the question of what is the smallest amount of data with which the task is achievable by proper control design. By employing modern system-theoretic tools, centered around the notion of entropy for dynamical systems as well as methods for characterizing robustness of system response to perturbations, the project will develop systematic approaches to control design in the presence of data-rate constraints. The results are expected to have significant impact on several application domains, including population dynamics, control of mechanical systems, and synchronization of networks of electrical or mechanical systems. The project also includes components for integrating the research with personnel training and educational activities. The overarching goal of the project is to gain insight into the challenge of characterizing the minimal data with which a control task is achievable, and to translate this insight into synergistic methods for designing communication and control schemes. In advanced control problems of interest in modern theory and applications, one frequently encounters switching behavior in either the process dynamics, or in the controller dynamics, or in the control task itself. Switching dynamics present significant challenges, which the project plans to overcome by deploying novel generalizations and combinations of topological entropy and input-to-state robustness concepts. The project will initially focus on three benchmark classes of control problems: 1) control of switched systems; 2) control of nonholonomic mechanical systems; and 3) robust leader--follower synchronization. Building from specific case studies within each of these problem classes, the project aims to achieve a general methodology for designing switching controllers for complex systems which utilize available data in optimal or near-optimal fashion.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这笔赠款将允许我们在解决控制问题所需的最小数据量的理解方面取得新的突破。对于一个给定的控制目标,现代控制设计师不仅面临着开发控制算法的任务,而且还面临着决定是否可以用可用数据实现目标的问题,或者是通过适当的控制设计可以实现任务的最小数据量是多少的问题。通过采用现代系统理论工具,围绕动态系统的熵概念以及表征系统对扰动的鲁棒性的方法,该项目将开发在数据速率限制的情况下进行控制设计的系统方法。预计这些结果将对几个应用领域产生重大影响,包括人口动态,机械系统的控制,以及电气或机械系统网络的同步。该项目还包括将研究与人员培训和教育活动相结合的组成部分。该项目的总体目标是深入了解表征控制任务可实现的最小数据的挑战,并将此见解转化为设计通信和控制方案的协同方法。在现代理论和应用中感兴趣的高级控制问题中,人们经常会遇到过程动态,或控制器动态,或控制任务本身的切换行为。切换动态提出了重大挑战,该项目计划通过部署新的概括和拓扑熵和输入到状态鲁棒性概念的组合来克服。该项目最初将集中在三个基准类的控制问题:1)切换系统的控制; 2)非完整机械系统的控制;和3)鲁棒的领导者-跟随者同步。该项目从每个问题类别的具体案例研究出发,旨在为复杂系统设计开关控制器提供一种通用方法,该方法利用现有数据以最佳或接近最佳的方式进行设计。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Estimation Entropy, Lyapunov Exponents, and Quantizer Design for Switched Linear Systems
切换线性系统的估计熵、Lyapunov 指数和量化器设计
Stability of linear systems with slow and fast time variation and switching
具有慢速和快速时间变化和切换的线性系统的稳定性
Controllability of Linear Time-Varying Systems with Quantized Controls and Finite Data-Rate
具有量化控制和有限数据速率的线性时变系统的可控性
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Liberzon其他文献

Liapunov functions and stability in control theory, second ed.,: A. Bacciotti, L. Rosier; Springer, Berlin, 2005, ISBN: 3-540-21332-5.
  • DOI:
    10.1016/j.automatica.2005.08.002
  • 发表时间:
    2005-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Daniel Liberzon
  • 通讯作者:
    Daniel Liberzon
Gradient algorithms for finding common Lyapunov functions
用于查找常见李亚普诺夫函数的梯度算法
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel Liberzon;Roberto Tempo
  • 通讯作者:
    Roberto Tempo
Safe Switching in Multi-Controller Implementation
  • DOI:
    10.1016/s1474-6670(17)41610-7
  • 发表时间:
    2001-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Brian D.O. Anderson;Thomas S Brinsmead;Daniel Liberzon;A. Stephen Morse
  • 通讯作者:
    A. Stephen Morse
Stabilizing a linear system with nite-state hybrid output feedback
Output-Input Stability: A New Variant of the Minimum-Phase Property for Nonlinear Systems
  • DOI:
    10.1016/s1474-6670(17)35262-x
  • 发表时间:
    2001-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Daniel Liberzon;A. Stephen Morse;Eduardo D. Sontag
  • 通讯作者:
    Eduardo D. Sontag

Daniel Liberzon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Liberzon', 18)}}的其他基金

Switched Control Systems with Limited Information: An Entropy Approach to Stabilization and Disturbance Attenuation
信息有限的切换控制系统:稳定和干扰衰减的熵方法
  • 批准号:
    1662708
  • 财政年份:
    2017
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Standard Grant
CSR--EHS: Small: Limited-information control of hybrid systems via reachable set propagation
CSR--EHS:小型:通过可达集传播对混合系统进行有限信息控制
  • 批准号:
    1217811
  • 财政年份:
    2012
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Standard Grant
Collaborative Research: Hybrid small-gain theorems for nonlinear networked and quantized control systems
合作研究:非线性网络和量化控制系统的混合小增益定理
  • 批准号:
    1231196
  • 财政年份:
    2012
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Standard Grant
Invertibility of hybrid systems
混合系统的可逆性
  • 批准号:
    0821153
  • 财政年份:
    2008
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Standard Grant
Control and Sensing under Limited Information
有限信息下的控制与感知
  • 批准号:
    0701676
  • 财政年份:
    2007
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Continuing Grant
CSR--EHS: Collaborative Research: Verification of Probabilistic Hybrid Systems: Stability and Beyond
CSR--EHS:协作研究:概率混合系统的验证:稳定性及其他
  • 批准号:
    0614993
  • 财政年份:
    2006
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Continuing Grant
CAREER: Hybrid Control of Nonlinear Systems
职业:非线性系统的混合控制
  • 批准号:
    0134115
  • 财政年份:
    2002
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Continuing Grant

相似国自然基金

Cortical control of internal state in the insular cortex-claustrum region
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    25 万元
  • 项目类别:

相似海外基金

Developing a Low-Cost Intelligent Ventilator with Remote Control for Rapid, Global Deployment and Minimal Healthcare Provider Exposure
开发具有远程控制功能的低成本智能呼吸机,以实现快速全球部署并最大限度地减少医疗保健提供者的暴露
  • 批准号:
    10166226
  • 财政年份:
    2018
  • 资助金额:
    $ 39.24万
  • 项目类别:
Novel flow control strategies for heat transfer enhancement in a minimal array of impinging jets
用于在最小冲击射流阵列中增强传热的新型流量控制策略
  • 批准号:
    1603720
  • 财政年份:
    2016
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Standard Grant
Engineering a Minimal Drive System for Vector Control in Drosophila melanogaster
设计用于果蝇矢量控制的最小驱动系统
  • 批准号:
    1655064
  • 财政年份:
    2015
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Studentship
EAGER: Local Control Strategies for Predicting Emergent Behavior and Cooperative Control in Real Time under Minimal Communication
EAGER:在最少通信下实时预测突发行为和协作控制的本地控制策略
  • 批准号:
    1134669
  • 财政年份:
    2011
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Standard Grant
State constrained control theoretical problems: qualitative issues, the minimal time function, and existence of feedback laws
状态约束控制理论问题:定性问题、最小时间函数和反馈定律的存在性
  • 批准号:
    311640-2005
  • 财政年份:
    2009
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Discovery Grants Program - Individual
State constrained control theoretical problems: qualitative issues, the minimal time function, and existence of feedback laws
状态约束控制理论问题:定性问题、最小时间函数和反馈定律的存在性
  • 批准号:
    311640-2005
  • 财政年份:
    2008
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Discovery Grants Program - Individual
State constrained control theoretical problems: qualitative issues, the minimal time function, and existence of feedback laws
状态约束控制理论问题:定性问题、最小时间函数和反馈定律的存在性
  • 批准号:
    311640-2005
  • 财政年份:
    2007
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Discovery Grants Program - Individual
State constrained control theoretical problems: qualitative issues, the minimal time function, and existence of feedback laws
状态约束控制理论问题:定性问题、最小时间函数和反馈定律的存在性
  • 批准号:
    311640-2005
  • 财政年份:
    2006
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Discovery Grants Program - Individual
State constrained control theoretical problems: qualitative issues, the minimal time function, and existence of feedback laws
状态约束控制理论问题:定性问题、最小时间函数和反馈定律的存在性
  • 批准号:
    311640-2005
  • 财政年份:
    2005
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Discovery Grants Program - Individual
RESEARCH INITIATION-MINIMAL CONTROL FIELDS
研究启动-最小控制场
  • 批准号:
    7356115
  • 财政年份:
    1973
  • 资助金额:
    $ 39.24万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了