Collaborative Research: CNS Core: Medium: Optimizing Storage Caches via Adaptive and Reconfigurable Tiering
协作研究:CNS 核心:中:通过自适应和可重新配置分层优化存储缓存
基本信息
- 批准号:2106359
- 负责人:
- 金额:$ 26.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
New types of data storage and memory devices are being developed and released, but they have very different properties, such as speeds, costs, sizes, reliability, and energy. With these new options, there is an opportunity to reduce the cost or environmental impact of storage while improving its reliability and performance. To realize these benefits, this project explores techniques to use new storage devices together. By exploring when and how to move data between “tiers” of new storage, as well as automatically determining what devices to use in data storage tiers, the project dramatically improves storage for both providers and the end users.This project analyzes methods to detect optimal reconfiguration points using machine-learning and time-series techniques via three interrelated thrusts. In the first thrust, accurate, analytical, multi-tier tail latency models are developed using queuing theory. Then, the project builds an efficient platform to simulate configurations and investigates methods to estimate tiered-cache reconfiguration costs. Finally, lightweight, low-overhead, accurate sampling techniques are explored for running systems, to quickly detect significant input/output and cache behavior changes. In response, this project further builds techniques to reconfigure a tiered-cache on running systems with minimal interference. Empirical case studies are applied to Memcached and Kubernetes containers.The storage community benefits from multiple artifacts this project produces: an open-source versatile multi-tier cache simulator, workload and analytical latency models, several case studied systems, a database of metrics from empirically evaluated devices, and publications reporting unexpected or counter-intuitive results. Storage consumers (e.g., companies) can simulate many “what-if” scenarios before actually purchasing any hardware, so as to avoid under- or over-provisioning. This project develops new course modules including short video tutorials. Several students, including women and members of underrepresented groups, are mentored and trained in research techniques.The project's artifacts—software, source code, data sets, multi-tier cache simulator, traces, and results—are all embodied in a system we call "MTCache: Multi-Tier Cache". Results will be disseminated using peer-reviewed publications and arxiv.org. All artifacts will be made public through the project Website: https://www.filesystems.org/mtcache. The project plans to maintain that site for at least ten years following the end of the project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
新型数据存储和存储设备正在开发和发布,但它们具有非常不同的特性,如速度、成本、大小、可靠性和能量。有了这些新选项,就有机会降低存储的成本或对环境的影响,同时提高其可靠性和性能。为了实现这些优势,该项目探索了同时使用新存储设备的技术。通过探索何时以及如何在新存储的“层”之间移动数据,以及自动确定在数据存储层中使用哪些设备,该项目极大地改善了提供商和最终用户的存储。该项目分析了通过三个相互关联的推力使用机器学习和时间序列技术来检测最佳重新配置点的方法。在第一个推力中,利用排队论建立了精确的、解析的、多层尾部延迟模型。然后,该项目构建了一个高效的平台来模拟配置,并研究了估算分层缓存重新配置成本的方法。最后,为运行中的系统探索轻量级、低开销、准确的采样技术,以快速检测重要的输入/输出和缓存行为更改。作为回应,该项目进一步构建了在运行的系统上重新配置分层缓存的技术,并将干扰降至最低。存储社区受益于该项目产生的多个构件:开源的多功能多层缓存模拟器、工作负载和分析延迟模型、几个案例研究系统、来自经验性评估设备的指标数据库以及报告意外或违反直觉的结果的出版物。存储消费者(例如,公司)可以在实际购买任何硬件之前模拟许多假设场景,以避免供应不足或供应过度。该项目开发了包括短视频教程在内的新课程模块。一些学生,包括女性和代表不足的群体的成员,接受了研究技术方面的指导和培训。项目的人工制品-软件、源代码、数据集、多层缓存模拟器、跟踪和结果-都体现在一个我们称为“MTCache:多层缓存”的系统中。结果将通过同行评议的出版物和arxiv.org传播。所有文物将通过项目网站https://www.filesystems.org/mtcache.公开。该项目计划在项目结束后对该场地进行至少十年的维护。这一奖励反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Desperately Seeking ... Optimal Multi-Tier Cache Configurations
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Tyler Estro;Pranav Bhandari;Avani Wildani;E. Zadok
- 通讯作者:Tyler Estro;Pranav Bhandari;Avani Wildani;E. Zadok
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vaidy Sunderam其他文献
Platform and algorithm effects on computational fluid dynamics applications in life sciences
- DOI:
10.1016/j.future.2016.03.024 - 发表时间:
2017-02-01 - 期刊:
- 影响因子:
- 作者:
Sofia Guzzetti;Tiziano Passerini;Jaroslaw Slawinski;Umberto Villa;Alessandro Veneziani;Vaidy Sunderam - 通讯作者:
Vaidy Sunderam
Vaidy Sunderam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vaidy Sunderam', 18)}}的其他基金
Enhancing Cyber-Infrastructure Usability Through Adaptive Middleware
通过自适应中间件增强网络基础设施的可用性
- 批准号:
1124418 - 财政年份:2011
- 资助金额:
$ 26.67万 - 项目类别:
Standard Grant
CSR - AES Integrative Approaches to Next-Generation Heterogeneous Computing
CSR - 下一代异构计算的 AES 集成方法
- 批准号:
0720761 - 财政年份:2007
- 资助金额:
$ 26.67万 - 项目类别:
Continuing Grant
SBIR Phase I: A Reconfigurable Collaborative Services Framework
SBIR 第一阶段:可重构协作服务框架
- 批准号:
0339563 - 财政年份:2004
- 资助金额:
$ 26.67万 - 项目类别:
Standard Grant
ITR: Unifying Software Frameworks for Distributed Computing
ITR:统一分布式计算软件框架
- 批准号:
0220183 - 财政年份:2002
- 资助金额:
$ 26.67万 - 项目类别:
Continuing Grant
MetaComputing with the IceT System
使用 IceT 系统进行元计算
- 批准号:
9872167 - 财政年份:1999
- 资助金额:
$ 26.67万 - 项目类别:
Standard Grant
Interfaces for Parallel and Distributed I/O
并行和分布式 I/O 接口
- 批准号:
9523544 - 财政年份:1996
- 资助金额:
$ 26.67万 - 项目类别:
Standard Grant
MDC: Collaborative Computing Frameworks for Natural SciencesResearch
MDC:自然科学研究的协作计算框架
- 批准号:
9527186 - 财政年份:1995
- 资助金额:
$ 26.67万 - 项目类别:
Continuing Grant
Issues in Heterogeneous Network Based Concurrent Computing
基于异构网络的并发计算问题
- 批准号:
9118787 - 财政年份:1992
- 资助金额:
$ 26.67万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
- 批准号:
2345339 - 财政年份:2023
- 资助金额:
$ 26.67万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2230945 - 财政年份:2023
- 资助金额:
$ 26.67万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225578 - 财政年份:2023
- 资助金额:
$ 26.67万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
- 批准号:
2406598 - 财政年份:2023
- 资助金额:
$ 26.67万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
- 批准号:
2418188 - 财政年份:2023
- 资助金额:
$ 26.67万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
- 批准号:
2242503 - 财政年份:2023
- 资助金额:
$ 26.67万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
- 批准号:
2343959 - 财政年份:2023
- 资助金额:
$ 26.67万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
- 批准号:
2343863 - 财政年份:2023
- 资助金额:
$ 26.67万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2341378 - 财政年份:2023
- 资助金额:
$ 26.67万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: RCBP-RF: CNS: ESD4CDaT - Efficient System Design for Cancer Detection and Treatment
合作研究:CISE-MSI:RCBP-RF:CNS:ESD4CDaT - 癌症检测和治疗的高效系统设计
- 批准号:
2318573 - 财政年份:2023
- 资助金额:
$ 26.67万 - 项目类别:
Standard Grant














{{item.name}}会员




