Collaborative Research: CNS Core: Medium: Information Freshness in Scalable and Energy Constrained Machine to Machine Wireless Networks
合作研究:CNS 核心:中:可扩展且能量受限的机器对机器无线网络中的信息新鲜度
基本信息
- 批准号:2106427
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
With the ever increasing importance of connected devices in smart home, digital healthcare, precision agriculture, smart city, environment and natural disaster monitoring, etc., it is of paramount interest to design the next generation wireless network architecture that can simultaneously support better services while accommodating sharply exponential growth rates of deployment far exceeding the addition of newly available bandwidth. This project will design and analyze new near-optimal machine-to-machine (M2M) network protocols based on the key concept that the quality of service of the machine-based traffic is largely determined by how timely or how fresh the information can be delivered to the destination, instead of the sheer quantity of the delivered messages. With this new shift of design paradigm to information freshness optimization, this project develops novel tools and techniques to quantify and improve the information freshness while meeting the practical requirements of wireless M2M networks, especially on the scalability, energy efficiency, and low-complexity autonomous distributed solutions. The results would significantly advance the state-of-the-art knowledge on M2M wireless network architectures, and propel robust and continuous development of M2M applications by minimizing the battery consumption, increasing the network capacity, and improving the temporal “connectedness” among the smart devices, a critical step forward when realizing the societal impact of Internet-of-Things. To further broaden the participation in network science and computing, the project will implement multiple inclusive mechanisms that increase leadership and participation from women and under-represented groups in a national high-profile annual research workshop (IMACCS) that is being held at the Ohio State University. Several important technical challenges of M2M information freshness optimization will be addressed in this project, including (i) Optimal network coordination when any back and forth message always experiences some random delay, which results in delayed command-&-response in every aspect of the network operations. (ii) Lack of distributional knowledge. Since the delay distributions in practical networks are difficult to estimate and constantly change over time, any practically viable solution must automatically adapt to the underlying unknown delay distributions. (iii) Energy efficiency. Many smart devices are battery limited, which prompts the need for energy-centric, low-complexity distributed network protocol designs. This project will address the above key challenges and develop the analytical foundations for controlling and optimizing information freshness in wireless M2M networks, resulting in fully distributed provably efficient algorithms and protocols that will be extensively evaluated on a large-scale fully programmable 5G wireless network testbed at Rice University.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着互联设备在智能家居、数字医疗、精准农业、智慧城市、环境和自然灾害监测等领域的重要性日益增加,设计下一代无线网络体系结构是最重要的,该体系结构可以同时支持更好的服务,同时适应远远超过新增可用带宽的急剧指数增长率的部署。该项目将设计和分析新的接近最优的机器对机器(M2M)网络协议,其关键概念是基于机器的流量的服务质量在很大程度上取决于信息可以交付到目的地的及时性或新鲜度,而不是交付消息的绝对数量。随着设计范式向信息新鲜度优化的新转变,该项目开发了新的工具和技术来量化和提高信息新鲜度,同时满足无线M2M网络的实际需求,特别是在可扩展性,能源效率和低复杂度的自主分布式解决方案上。研究结果将大大推进M2M无线网络架构的最新知识,并通过最小化电池消耗,增加网络容量和改善智能设备之间的时间“连通性”来推动M2M应用的稳健和持续发展,这是实现物联网社会影响的关键一步。为了进一步扩大对网络科学和计算的参与,该项目将实施多个包容性机制,以提高妇女和代表性不足的群体在俄亥俄州州立大学举行的全国高知名度年度研究研讨会(IMACCS)中的领导力和参与度。M2M信息新鲜度优化的几个重要技术挑战将在该项目中解决,包括(i)当任何来回消息总是经历一些随机延迟时的最佳网络协调,这导致在网络操作的每个方面延迟命令-响应。(ii)缺乏分布知识。由于实际网络中的延迟分布很难估计,并且随着时间的推移不断变化,因此任何实际可行的解决方案都必须自动适应潜在的未知延迟分布。(iii)能源效率许多智能设备都是电池有限的,这就需要以能源为中心,低复杂度的分布式网络协议设计。该项目将解决上述关键挑战,并为控制和优化无线M2M网络中的信息新鲜度开发分析基础,从而产生完全分布式的可证明有效的算法和协议,这些算法和协议将在大型Rice大学的大规模完全可编程5G无线网络试验台。该奖项反映了NSF的法定使命,并通过使用基金会的学术价值和更广泛的影响审查标准。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Towards Optimal Tradeoff Between Data Freshness and Update Cost in Information-update Systems
信息更新系统中数据新鲜度和更新成本之间的最佳权衡
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:10.6
- 作者:Liu, Z.;Li, B.;Zheng, Z.;Hou, Y. T.;Ji, B.
- 通讯作者:Ji, B.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bo Ji其他文献
A moving weak and small target detection algorithm for multispectral image sequences
多光谱图像序列的运动弱小目标检测算法
- DOI:
10.1117/12.2608019 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Zheng Zhang;Xuya Zhang;Yifan Shen;Yangyan Ou;Bo Ji;Jia;Jing Hu - 通讯作者:
Jing Hu
Algal Toxins in Water
水中的藻类毒素
- DOI:
10.1002/047147844x.wq23 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Bo Ji;M. Wong;R. Wong;Yu’e Jiang - 通讯作者:
Yu’e Jiang
Deep Learning Models for Biomedical Image Analysis
用于生物医学图像分析的深度学习模型
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Bo Ji;Wenlu Zhang;Rongjian Li;Hao Ji - 通讯作者:
Hao Ji
Securing Bystander Privacy in Mixed Reality While Protecting the User Experience
保护混合现实中的旁观者隐私,同时保护用户体验
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:1.9
- 作者:
Matthew Corbett;Brendan David;Jiacheng Shang;Y. C. Hu;Bo Ji - 通讯作者:
Bo Ji
Diagnosis Expert System for Oesophagus Cancer in Early Stage
食管癌早期诊断专家系统
- DOI:
10.1109/csss.2012.530 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Bo Ji;R. Song;Feng Xu;Yangdong Ye - 通讯作者:
Yangdong Ye
Bo Ji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bo Ji', 18)}}的其他基金
Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
- 批准号:
2312833 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
NSF Student Travel Grant for 2020 ACM International Conference on Measurement and Modeling of Computer Systems (ACM SIGMETRICS 2020)
NSF 学生旅费资助 2020 年 ACM 国际计算机系统测量和建模会议 (ACM SIGMETRICS 2020)
- 批准号:
2013729 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
NSF Student Travel Grant for 2020 ACM International Conference on Measurement and Modeling of Computer Systems (ACM SIGMETRICS 2020)
NSF 学生旅费资助 2020 年 ACM 国际计算机系统测量和建模会议 (ACM SIGMETRICS 2020)
- 批准号:
2110139 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: Theory and Algorithms for Efficient Control of Wireless Networks with Jointly Optimized Performance: High Throughput, Low Delay, and Low Complexity
职业:具有联合优化性能的无线网络高效控制的理论和算法:高吞吐量、低延迟和低复杂性
- 批准号:
2112694 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
CRII: CIF: Models, Theories and Algorithms for Timeliness Optimization in Information-update Systems
CRII:CIF:信息更新系统时效性优化的模型、理论和算法
- 批准号:
1657162 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: Theory and Algorithms for Efficient Control of Wireless Networks with Jointly Optimized Performance: High Throughput, Low Delay, and Low Complexity
职业:具有联合优化性能的无线网络高效控制的理论和算法:高吞吐量、低延迟和低复杂性
- 批准号:
1651947 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2230945 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
- 批准号:
2406598 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
- 批准号:
2418188 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
- 批准号:
2345339 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225578 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
- 批准号:
2242503 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
- 批准号:
2343959 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
- 批准号:
2343863 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2341378 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Innovating Volumetric Video Streaming with Motion Forecasting, Intelligent Upsampling, and QoE Modeling
合作研究:CNS 核心:中:通过运动预测、智能上采样和 QoE 建模创新体积视频流
- 批准号:
2409008 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant