Collaborative research: Cascade “Ecohydromics” in the Amazonian Headwater System
合作研究:亚马逊河源头系统的级联“生态水文学”
基本信息
- 批准号:2106540
- 负责人:
- 金额:$ 15.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Water movement through landscapes supports plant, animal, and human life, and through evaporation affects cloud processes and large-scale atmospheric circulation. The Amazon Basin cycles more water through streamflow and evaporation than any other contiguous forest in the world, and transpiration by trees – water taken up by roots and released to the atmosphere – is a critical part of this cycle. Understanding how plant roots, stems, and leaves interact with soil water to jointly regulate forest transpiration across landscapes is a critical knowledge gap, especially as climate changes. Forests are likely adapted to distinct soil moisture conditions in different parts of Amazonian landscapes. Specifically, forests on elevated plateaus with deep groundwater use water conservatively in order to tolerate drought, while those in wet valleys with shallow groundwater use water freely but may be poorly prepared for droughts of the future caused by the climate change. To understand landscape hydrology, rainforest compositions, and their susceptibility to global change, an integrated understanding of how water flows are regulated from upstream-to-downstream by plants and soil is required. This understanding is also critical for Earth-system modeling used to project the fate of Amazonian rainforests and quantify their future influence on climate. This project links diverse disciplines – plant physiology, ecology, hydrology – and integrates them into a model of landscape function. This project will also help train the next generation of scientists, both in the U.S. and Brazil, on interdisciplinary approaches in research, and through a summer school on computer modeling of vegetation and hydrologic processes. The project will develop a novel science outreach program connecting K-12 students to real-time Amazon tree data as well as a short class curriculum and a series of videos that teach students how to interpret data, understand the broader scientific context, and build a personal connection with scientists and real-time “talking trees” from the world’s most famous tropical forest.This project characterizes landscape variation in physiological and hydrological processes, and integrate observations with watershed modeling and hypothesis testing. Project activities focus on the spatially intricate mosaic of plateaus and valleys characteristic of central Amazonian headwater catchments. This research hypothesizes that: (H1) strong landscape variation in forest transpiration capacity arises from distinct characteristics of trees residing on plateaus (no root access to groundwater) and valleys (root access to groundwater) zones; (H2) previously unquantified “hybrid” soil hydraulics govern soil water fluxes and transit times connecting plateaus and valleys; and (H3) plateau forests influence the composition and function of valley forests by regulating subsurface water flows from higher to lower landscape areas. Study sites are located in the Brazilian Amazon: “KM34” near Manaus contains an instrumented watershed with more historical data and research on hillslope hydrology than any other watershed in a pristine wet tropical forest, and “KM67” near Santarém sits on a broad plateau with previously deployed deep soil moisture pits, allowing the isolation of processes typical for flat, elevated plateaus. Both sites contain eddy flux towers, canopy access walkways, and a rich history of ecological research and available datasets. A new valley subsite near KM67 will serve as an independent replicate of KM34 observations in valleys. Process-based models of vegetation ecophysiology, subsurface hydrology, and groundwater will be parameterized with observations of leaf physiology, tree morphological traits, soil moisture and physical properties, water table, and streamflow. These models will be integrated employing novel tools in probabilistic learning and uncertainty quantification for proper parameterization and validated with independent observations of tree sapflow, and ecosystem gas exchange and energy balance.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
通过景观的水运动支持植物,动物和人类的生命,并通过蒸发影响云过程和大规模的大气循环。与世界上任何其他连续的森林相比,亚马逊盆地通过水流和蒸发循环更多的水,而树木的蒸腾作用 - 被根吸收并释放到大气中 - 是该循环的关键部分。了解植物的根,植物和叶与土壤水相互作用以共同调节跨景观的森林蒸腾是一个关键的知识差距,尤其是随着气候变化。在亚马逊景观的不同部分,森林可能适应不同的土壤水分条件。具体而言,为了容忍干旱,森林在高高的高原上使用深水水,而那些在湿山谷中的森林却没有浅地下水使用水,但对于由于气候变化造成的未来干旱的准备不足。为了了解景观水文学,雨林组成及其对全球变化的敏感性,需要综合地了解植物和土壤从上游到下游如何调节水流的综合理解。这种理解对于用于投射亚马逊雨林的命运并量化其未来对气候的影响的地球系统建模也至关重要。该项目将各种学科联系起来 - 植物生理,生态学,水文学 - 将它们整合到景观功能的模型中。该项目还将帮助培训美国和巴西的下一代科学家,在研究中的跨学科方法,并通过一所暑期学校对植被和水文过程的计算机建模。该项目将制定一项新的科学宣传计划,将K-12学生与实时亚马逊树数据以及短期课程以及一系列视频教会学生如何解释数据,了解更广泛的科学环境,并与科学家和与科学家和实时的“谈话树”建立与世界上最著名的热带森林中的“材料和水力化学”的型号。测试。项目活动的重点是高原和山谷特征的空间复杂的亚马逊源头流域的特征。这项研究假设:(H1)森林蒸腾能力的强烈景观变化是由位于高原上(无根通向地下水)和山谷(根部进入地下水)区的树木的独特特征引起的; (H2)以前未经量化的“混合”土壤水合物控制着土壤水的通量和连接高原和山谷的过境时间; (H3)高原森林会影响谷森林通过研究地点的组成和功能,位于巴西的亚马逊:Manau附近的“ KM34”包含一个乐器的流域,该流域具有比在原始的湿wit森林和“ KM67”宽阔的土壤中,在山坡水文方面比其他任何其他流域进行了更多的山地水文,以前是宽阔的土壤。允许隔离平坦,高原升高的过程。这两个站点都包含涡流塔,顶篷通道的人行道以及生态研究和可用数据集的丰富历史。 KM67附近的一个新山谷子站点将作为山谷中KM34观测值的独立复制。基于过程的植被生态生物学,地下水文学和地下水的模型将通过观察叶片生理学,树形态特征,土壤水分和物理特性,地下水位和水流的观察。这些模型将在概率学习和不确定性量化中进行适当的参数化,并通过对树苗的独立观察以及生态系统气体交换和能量平衡进行验证。该奖项反映了NSF的法定任务,并被认为是通过评估基金会的智力和更广泛的影响来验证的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Loren Albert其他文献
Loren Albert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Loren Albert', 18)}}的其他基金
Collaborative research: Cascade “Ecohydromics” in the Amazonian Headwater System
合作研究:亚马逊河源头系统的级联“生态水文学”
- 批准号:
2327991 - 财政年份:2023
- 资助金额:
$ 15.26万 - 项目类别:
Standard Grant
相似国自然基金
基于肿瘤代谢/光动力级联治疗的纳米诊疗剂构建及协同机制研究
- 批准号:32301199
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
调控线粒体钙失稳纳米信使联合自噬抑制用于乳腺癌的信号级联可视化治疗研究
- 批准号:82302210
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多级分步靶向“诱饵”外泌体递释系统瘤内级联免疫激活克服三阴性乳腺癌耐药的研究
- 批准号:82373294
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
靶向性DC/γδT双免疫细胞源性囊泡级联反应器抗肝癌研究
- 批准号:82360570
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
双驱动的硒纳米酶马达调控类风湿性关节炎氧失衡抑制炎症级联反应与机制研究
- 批准号:32301175
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: NSFGEO-NERC: Community And Structural Collapse During Mass Extinctions (CASCaDE)
合作研究:NSFGEO-NERC:大规模灭绝期间的群落和结构崩溃(CASCaDE)
- 批准号:
2334455 - 财政年份:2023
- 资助金额:
$ 15.26万 - 项目类别:
Standard Grant
Collaborative Research: NSFGEO-NERC: Community And Structural Collapse During Mass Extinctions (CASCaDE)
合作研究:NSFGEO-NERC:大规模灭绝期间的群落和结构崩溃(CASCaDE)
- 批准号:
2334456 - 财政年份:2023
- 资助金额:
$ 15.26万 - 项目类别:
Standard Grant
Collaborative research: Cascade “Ecohydromics” in the Amazonian Headwater System
合作研究:亚马逊河源头系统的级联“生态水文学”
- 批准号:
2327991 - 财政年份:2023
- 资助金额:
$ 15.26万 - 项目类别:
Standard Grant
Collaborative research: Cascade “Ecohydromics” in the Amazonian Headwater System
合作研究:亚马逊河源头系统的级联“生态水文学”
- 批准号:
2106804 - 财政年份:2022
- 资助金额:
$ 15.26万 - 项目类别:
Standard Grant
Collaborative Research: Phenocryst or not? Using a stratovolcano's crystal cargo to explore crustal-scale magmatic systems, Koma Kulshan (Mt. Baker), Northern Cascade Arc
合作研究:斑晶与否?
- 批准号:
2147967 - 财政年份:2022
- 资助金额:
$ 15.26万 - 项目类别:
Standard Grant