Collaborative Research:CNS Core:Medium:Unlinking the (Block)chain:Scalable Byzantine-Tolerant Databases.
合作研究:CNS 核心:中:断开(区块)链:可扩展的拜占庭容忍数据库。
基本信息
- 批准号:2106842
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-15 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project proposes a new architecture for enabling safe and secure data sharing among mutually distrustful parties. Blockchains are today the platform of choice for such needs. They offer the appealing abstraction of a shared, totally-ordered, tamper-resistant log of operations, implemented via a distributed protocol run by a collection of computing nodes, each replicating the entire state of the log. While the details of these protocols vary for different blockchain implementations, they all rely on an underlying architecture that suffers from two key limitations. First, it predicates correctness and integrity on an execution model where replicas process operations sequentially, according to the same total order; this quickly becomes a performance bottleneck. Second, it complicates deployment. The need for all replicas store the full body of data stored in the blockchain is not only resource intensive, but can be legally problematic: GDPR laws, for instance, severely restrict where personally identifiable data (such as banking or medical records) of European citizens can reside. This project overcomes these limitations by implementing the blockchain abstraction on a novel foundation, and, in so doing, demonstrates that efficient data processing and the decentralization of trust can go hand-in-hand. At its core is a key insight gained from prior research in databases – namely, that is possible to implement the abstraction of a totally ordered sequence of transactions without requiring all of their operations to be actually executed sequentially. To leverage the opportunity for greater parallelism offered by this insight, this project will develop the first geo-distributed database provably resilient to malicious sabotage, whether from some of the computing nodes implementing the database or from clients of the database. Today, there exists no rigorous specification of what correctness would even mean in such a database; this project will introduce such correctness specification, based on the ethos of bounding the influence that malicious actors (whether among the replicas implementing the database or among its clients) can have on the outcome of transactions submitted by correct clients. It will then develop new algorithmic techniques that, despite adversarial attempts to the contrary, implement the blockchain abstraction while provably enforcing these correctness conditions. To simplify deployment, this project will focus on drastically reducing the degree of replication necessary to support blockchains. Specifically, it will refine the blockchain’s current threat model to decouple the degree of replication needed to ensure that no data will be lost from what is required to guarantee the integrity of the blockchain execution; this will make it possible to relax the requirement that all replicas store the entire state of the blockchain, and thus lead to easier regulatory compliance. Tighter integration among mutually untrusted parties can be transformative for a variety of applications, including healthcare, financial services, and supply chain management. Databases are natural candidates for supporting this integration, but currently lack a way to express and efficiently enforce correctness when some actors behave maliciously. This work builds that conceptual framework, leveraging a novel architecture that makes it easier to comply with data use regulations, and instantiates it in working prototypes that will be rigorously evaluated for performance and robustness. The synergy between theory and engineering critical for the success of this project is also crucial to the education of the next generation of system engineers: they will have to negotiate issues of performance, fault-tolerance, and trust in the ubiquitous large-scale distributed systems that underpin most industries today. Proposed lecture and project materials will prepare students to apply a principled approach to building trustworthy distributed systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目提出了一种新的架构,用于在相互不信任的各方之间实现安全可靠的数据共享。区块链如今是满足这种需求的首选平台。它们提供了共享的、完全有序的、防篡改的操作日志的吸引人的抽象,通过由一组计算节点运行的分布式协议实现,每个计算节点复制日志的整个状态。虽然这些协议的细节因区块链实现的不同而有所不同,但它们都依赖于底层架构,该架构受到两个关键限制。首先,它在执行模型上断言正确性和完整性,在该模型中,副本按照相同的总顺序顺序处理操作;这很快就成为性能瓶颈。其次,它使部署变得复杂。需要所有副本存储区块链中存储的全部数据不仅是资源密集型的,而且可能存在法律问题:例如,GDPR法律严格限制欧洲公民的个人可识别数据(如银行或医疗记录)可以驻留在哪里。该项目通过在新的基础上实施区块链抽象来克服这些限制,并通过这样做证明了高效的数据处理和信任的分散可以齐头并进。其核心是从以前的数据库研究中获得的一个关键见解-即,可以实现完全有序的事务序列的抽象,而不需要实际按顺序执行它们的所有操作。为了利用这一洞察力提供的更大并行性的机会,该项目将开发第一个地理分布式数据库,该数据库被证明对恶意破坏具有弹性,无论是来自实现数据库的一些计算节点还是来自数据库客户端的恶意破坏。今天,在这样的数据库中甚至没有关于正确性意味着什么的严格规范;这个项目将引入这样的正确性规范,基于限制恶意行为者(无论是在实现数据库的复制品之间还是在其客户端之间)对正确客户端提交的事务的结果所产生的影响的精神。然后,它将开发新的算法技术,尽管有相反的敌对尝试,但在可证明地强制执行这些正确性条件的同时,实现区块链抽象。为了简化部署,该项目将专注于大幅降低支持区块链所需的复制程度。具体地说,它将优化区块链当前的威胁模型,以确保不会丢失任何数据所需的复制程度与保证区块链执行的完整性所需的复制程度脱钩;这将使放松所有副本存储区块链的整个状态的要求成为可能,从而导致更容易的监管合规。相互不受信任的各方之间更紧密的集成可能会对各种应用程序产生变革,包括医疗保健、金融服务和供应链管理。数据库是支持这种集成的自然候选者,但目前缺乏一种在某些参与者恶意行为时表示和有效执行正确性的方法。这项工作构建了概念框架,利用了一种新的体系结构,使其更容易遵守数据使用规则,并在工作原型中实例化它,这些原型将被严格评估性能和健壮性。理论和工程之间的协同对于这个项目的成功至关重要,对下一代系统工程师的教育也是至关重要的:他们将不得不就性能、容错和对支撑当今大多数行业的无处不在的大规模分布式系统的信任问题进行谈判。建议的讲座和项目材料将使学生准备好应用原则性的方法来构建值得信赖的分布式系统。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
BeeGees: Stayin' Alive in Chained BFT
- DOI:10.1145/3583668.3594572
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:N. Giridharan;Florian Suri-Payer;Matthew Ding;H. Howard;Ittai Abraham;Natacha Crooks
- 通讯作者:N. Giridharan;Florian Suri-Payer;Matthew Ding;H. Howard;Ittai Abraham;Natacha Crooks
Basil: Breaking up BFT with ACID (transactions)
- DOI:10.1145/3477132.3483552
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:Florian Suri-Payer;Matthew Burke;Zheng Wang-;Yunhao Zhang;Lorenzo Alvisi;Natacha Crooks
- 通讯作者:Florian Suri-Payer;Matthew Burke;Zheng Wang-;Yunhao Zhang;Lorenzo Alvisi;Natacha Crooks
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Natacha Crooks其他文献
5th International Symposium on Foundations and Applications of Blockchain 2022, FAB 2022, June 3, 2022, Berkeley, CA, USA
第五届区块链基础与应用国际研讨会 2022,FAB 2022,2022 年 6 月 3 日,美国加利福尼亚州伯克利
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Sara Tucci;Natacha Crooks - 通讯作者:
Natacha Crooks
Automatic Compartmentalization of Distributed Protocols
分布式协议的自动划分
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
David C. Y. Chu;Rithvik Panchapakesan;Shadaj Laddad;Lucky Katahanas;Chris Liu;Kaushik Shivakumar;Natacha Crooks;J. M. Hellerstein;Heidi Howard - 通讯作者:
Heidi Howard
Picsou: Enabling Efficient Cross-Consensus Communication
Picsou:实现高效的跨共识沟通
- DOI:
10.48550/arxiv.2312.11029 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Reginald Frank;Micah Murray;Suyash Gupta;Ethan Xu;Natacha Crooks;Manos Kapritsos - 通讯作者:
Manos Kapritsos
TARDiS: A Branch-and-Merge Approach to Weak Consistency
- DOI:
10.1007/978-3-319-63962-8_160-1 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Natacha Crooks - 通讯作者:
Natacha Crooks
Smart Casual Verification of CCF's Distributed Consensus and Consistency Protocols
CCF分布式共识和一致性协议的智能休闲验证
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Heidi Howard;M. Kuppe;Edward Ashton;A. Chamayou;Natacha Crooks - 通讯作者:
Natacha Crooks
Natacha Crooks的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2230945 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
- 批准号:
2406598 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
- 批准号:
2418188 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
- 批准号:
2345339 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225578 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
- 批准号:
2242503 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
- 批准号:
2343959 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
- 批准号:
2343863 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2341378 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Innovating Volumetric Video Streaming with Motion Forecasting, Intelligent Upsampling, and QoE Modeling
合作研究:CNS 核心:中:通过运动预测、智能上采样和 QoE 建模创新体积视频流
- 批准号:
2409008 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant