Collaborative Research: CNS Core: Medium: Analytics and Online Optimization at Scale for Cellular Networks

合作研究:CNS 核心:中:蜂窝网络大规模分析和在线优化

基本信息

  • 批准号:
    2107037
  • 负责人:
  • 金额:
    $ 80万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Cellular networks have become one of the critical infrastructures for society, with users expecting reliable connectivity and performance. Behind the scenes, operating these networks require updating hundreds of parameters at time scales ranging from hours to weeks, which is extremely costly and inefficient for engineers at the network operations center. Further, when failures or inefficient performance occurs, detecting and isolating the root causes is again a challenging, but critical task. This proposal focuses on efficiently operating these networks and developing tools to detect anomalies, both using machine learning techniques. The goal of this proposal is to develop algorithms based on online learning, Bayesian optimization and deep learning for parameter tuning and anomaly detection. Building on partnerships with major cellular providers and the use of real data-traces and testbeds, our algorithms and approaches have real-world impact. The research outcomes are incorporated into the graduate and undergraduate curriculum.Using domain knowledge in wireless theory and systems and machine learning, this project develops sample-efficient online learning methods to optimize multi-dimensional tuning parameters in a single cellular base station, and then apply transfer learning to further support distributed and cooperative parameter tuning for multiple base stations. Moreover, it designs deep compressive sensing for anomaly detection and diagnosis in cellular networks. These thrusts are complementary to each other: anomaly detection helps to provide safety checking during parameter tuning while insights gained from parameter tuning also helps disambiguate and diagnose anomalies. A combination of real traces from a major US cellular network, simulation, and testbed experiments is used to validate the design.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
蜂窝网络已成为社会的关键基础设施之一,用户期望可靠的连接和性能。在幕后,运营这些网络需要在数小时到数周的时间范围内更新数百个参数,这对于网络运营中心的工程师来说成本极高且效率低下。此外,当发生故障或低效性能时,检测和隔离根本原因又是一项具有挑战性但又至关重要的任务。该提案的重点是有效操作这些网络并开发检测异常的工具,两者都使用机器学习技术。该提案的目标是开发基于在线学习、贝叶斯优化和深度学习的算法,用于参数调整和异常检测。我们的算法和方法建立在与主要蜂窝提供商的合作伙伴关系以及使用真实数据跟踪和测试平台的基础上,具有现实世界的影响。研究成果被纳入研究生和本科生课程。利用无线理论和系统以及机器学习领域的知识,该项目开发了样本有效的在线学习方法来优化单个蜂窝基站中的多维调谐参数,然后应用迁移学习进一步支持多个基站的分布式和协作参数调谐。此外,它还设计了用于蜂窝网络中异常检测和诊断的深度压缩感知。这些推力是相互补充的:异常检测有助于在参数调整期间提供安全检查,而从参数调整中获得的见解也有助于消除歧义和诊断异常。结合来自美国主要蜂窝网络、模拟和测试台实验的真实痕迹来验证设计。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Asymptotically-Optimal Gaussian Bandits with Side Observations
带有侧面观测的渐近最优高斯老虎机
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sanjay Shakkottai其他文献

Geographic Routing With Limited Information in Sensor Networks
传感器网络中信息有限的地理路由
Understanding Inverse Scaling and Emergence in Multitask Representation Learning
了解多任务表示学习中的逆缩放和涌现
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. E. Ildiz;Zhe Zhao;Samet Oymak;Xiangyu Chang;Yingcong Li;Christos Thrampoulidis;Lin Chen;Yifei Min;Mikhail Belkin;Aakanksha Chowdhery;Sharan Narang;Jacob Devlin;Maarten Bosma;Gaurav Mishra;Adam Roberts;Liam Collins;Hamed Hassani;M. Soltanolkotabi;Aryan Mokhtari;Sanjay Shakkottai;Provable;Simon S. Du;Wei Hu;S. Kakade;Chelsea Finn;A. Rajeswaran;Deep Ganguli;Danny Hernandez;Liane Lovitt;Amanda Askell;Yu Bai;Anna Chen;Tom Conerly;Nova Dassarma;Dawn Drain;Sheer Nelson El;El Showk;Stanislav Fort;Zac Hatfield;T. Henighan;Scott Johnston;Andy Jones;Nicholas Joseph;Jackson Kernian;Shauna Kravec;Benjamin Mann;Neel Nanda;Kamal Ndousse;Catherine Olsson;D. Amodei;Tom Brown;Jared Ka;Sam McCandlish;Chris Olah;Dario Amodei;Trevor Hastie;Andrea Montanari;Saharon Rosset;Jordan Hoffmann;Sebastian Borgeaud;A. Mensch;Elena Buchatskaya;Trevor Cai;Eliza Rutherford;Diego de;Las Casas;Lisa Anne Hendricks;Johannes Welbl;Aidan Clark;Tom Hennigan;Eric Noland;Katie Millican;George van den Driessche;Bogdan Damoc;Aurelia Guy;Simon Osindero;Karen Si;Erich Elsen;Jack W. Rae;O. Vinyals;Jared Kaplan;B. Chess;R. Child;S. Gray;Alec Radford;Jeffrey Wu;I. R. McKenzie;Alexander Lyzhov;Michael Pieler;Alicia Parrish;Aaron Mueller;Ameya Prabhu;Euan McLean;Aaron Kirtland;Alexis Ross;Alisa Liu;Andrew Gritsevskiy;Daniel Wurgaft;Derik Kauff;Gabriel Recchia;Jiacheng Liu;Joe Cavanagh;Tom Tseng;Xudong Korbak;Yuhui Shen;Zhengping Zhang;Najoung Zhou;Samuel R Kim;Bowman Ethan;Perez;Feng Ruan;Youngtak Sohn
  • 通讯作者:
    Youngtak Sohn
Serving content with unknown demand: the high-dimensional regime
  • DOI:
    10.1007/s11134-015-9443-0
  • 发表时间:
    2015-04-12
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Sharayu Moharir;Javad Ghaderi;Sujay Sanghavi;Sanjay Shakkottai
  • 通讯作者:
    Sanjay Shakkottai
Towards a queueing-based framework for in-network function computation
  • DOI:
    10.1007/s11134-012-9296-8
  • 发表时间:
    2012-04-25
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Siddhartha Banerjee;Piyush Gupta;Sanjay Shakkottai
  • 通讯作者:
    Sanjay Shakkottai
A Lyapunov Theory for Finite-Sample Guarantees of Markovian Stochastic Approximation
马尔可夫随机逼近有限样本保证的李亚普诺夫理论
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Zaiwei Chen;S. T. Maguluri;Sanjay Shakkottai;Karthikeyan Shanmugam
  • 通讯作者:
    Karthikeyan Shanmugam

Sanjay Shakkottai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sanjay Shakkottai', 18)}}的其他基金

SpecEES: Energy-efficient Spectrum and Infrastructure Co-use for Sensing and Communications in Dense Networks
SpecEES:高能效频谱和基础设施共同使用,用于密集网络中的传感和通信
  • 批准号:
    1731658
  • 财政年份:
    2017
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
NeTS: Small: A Learning Approach to Managing Cellular Network Upgrades
NeTS:小型:管理蜂窝网络升级的学习方法
  • 批准号:
    1718089
  • 财政年份:
    2017
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
NeTS: Small: Inverse Problems from Cascades: Structure, Causation and Opinions
NeTS:小:级联反问题:结构、因果关系和观点
  • 批准号:
    1320175
  • 财政年份:
    2013
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
NeTS: Medium: Collaborative Research: Information Architectures for Femto-Aided Cellular Networks
NeTS:媒介:协作研究:毫微微辅助蜂窝网络的信息架构
  • 批准号:
    1161868
  • 财政年份:
    2012
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
IUCRC University of Texas Wireless Networking and Communications Group: A WICAT Center Site
IUCRC 德克萨斯大学无线网络和通信小组:WICAT 中心站点
  • 批准号:
    1067914
  • 财政年份:
    2011
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
Workshop: NSF/ARL Workshop on the Frontiers of Controls, Games and Network Science, Workshop will be held in UT Austin, TX on Feb. 19-21, 2010.
研讨会:NSF/ARL 控制、游戏和网络科学前沿研讨会,研讨会将于 2010 年 2 月 19 日至 21 日在德克萨斯州 UT 奥斯汀举行。
  • 批准号:
    0952806
  • 财政年份:
    2009
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
FIND: Collaborative Research: Towards An Analytic Foundation for Network Architectures
FIND:协作研究:迈向网络架构的分析基础
  • 批准号:
    0721380
  • 财政年份:
    2007
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
Collaborative Research: Towards An Analytic Foundation for Network Architectures
协作研究:建立网络架构的分析基础
  • 批准号:
    0634898
  • 财政年份:
    2006
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS-NOSS: Towards a Theory of In-network Computation for Surveillance and Monitoring in Wireless Sensor Networks
合作研究:NetS-NOSS:无线传感器网络中用于监视和监测的网内计算理论
  • 批准号:
    0519401
  • 财政年份:
    2005
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
Collaborative Research: ITR/NGS: Fast Wireless Network Simulation Using Spatio-Temporal Dilations
合作研究:ITR/NGS:使用时空扩张的快速无线网络仿真
  • 批准号:
    0325788
  • 财政年份:
    2004
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
  • 批准号:
    2345339
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2230945
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
  • 批准号:
    2225578
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
  • 批准号:
    2406598
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
  • 批准号:
    2418188
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
  • 批准号:
    2242503
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
  • 批准号:
    2343959
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
  • 批准号:
    2343863
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2341378
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE-MSI: RCBP-RF: CNS: ESD4CDaT - Efficient System Design for Cancer Detection and Treatment
合作研究:CISE-MSI:RCBP-RF:CNS:ESD4CDaT - 癌症检测和治疗的高效系统设计
  • 批准号:
    2318573
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了