III: Medium: Collaborative Research: Extracting and Linking AI Artifacts
III:媒介:协作研究:提取和链接人工智能工件
基本信息
- 批准号:2107213
- 负责人:
- 金额:$ 67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to create a framework for linking all salient aspects of an artificial intelligence (AI) workflow, including data, AI models, AI tools, tasks, and training methodology. The investigators seek to create a framework that takes a holistic view of the AI workflow, and thus, will provide a solution to one of the three key problems identified in the Report of the Office of Science Roundtable on Data for AI: “Address open questions in AI with frameworks for relating data, models, and tasks.” One of the key provisions of federal funding agencies is the creation and open dissemination of research artifacts (e.g., data, models). Although publication-based knowledge is easily reused, data and models are not. Data are the key ingredients to generate AI models. However, the relation between an AI model and the data used to generate it or the task it solves, and the data on which the AI model is tested on, is captured by neither the model nor the data or task. Thus, the investigators seek to create a unified approach to construct this relationship and annotate it. This project will contribute to the broad field of information retrieval and, in particular, to the field of named entity recognition. In this project, the named entities are the datasets, AI models, developing tools, and the names of various methods, such as those employed in training. The investigators will employ a holistic approach to the management of AI research artifacts, i.e., paper-task-data-model-tool, which in turn will produce an innovative way to conceptualize and execute data-AI model search and aggregation. The technical innovation of this project is the creation of novel techniques for entity and relation extraction as well as for entity linking. The project will also contribute to the field of scientific literature mining. The investigators will create novel technology to automatically identify and catalog public AI data and models that increase their reusability. The key insight is that, without the research papers themselves, the research AI artifacts lack the necessary context for reuse. For example, papers describe the role of a dataset (e.g., training or testing) and tell if a model is original or used as a baseline. By automatically inferring task-data-model relations, this project will increase the ability of suggesting artifacts to a new undertaking, thus shortening the time for relevant artifact search. Educationally, this work will involve training of graduate and undergraduate students, particularly encouraging the participation of women and underrepresented groups in the research efforts, and curriculum development.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目标是创建一个框架,用于链接人工智能(AI)工作流程的所有重要方面,包括数据、AI模型、AI工具、任务和培训方法。研究人员寻求创建一个从整体上看待人工智能工作流程的框架,因此,将为科学办公室人工智能数据圆桌会议报告中确定的三个关键问题之一提供解决方案:“用关联数据、模型和任务的框架解决人工智能中的公开问题。”联邦资助机构的关键条款之一是创建和公开传播研究成果(例如数据、模型)。尽管基于出版物的知识很容易重复使用,但数据和模型却并非如此。数据是生成人工智能模型的关键因素。然而,AI模型与用于生成它或它所解决的任务的数据之间的关系,以及测试AI模型所基于的数据,既不被模型捕获,也不被数据或任务捕获。因此,研究人员试图创建一种统一的方法来构建这种关系并对其进行注释。该项目将有助于广泛的信息检索领域,特别是命名实体识别领域。在这个项目中,命名的实体是数据集、人工智能模型、开发工具和各种方法的名称,例如训练中使用的方法。调查人员将采用一种全面的方法来管理人工智能研究成果,即纸张-任务-数据模型-工具,这反过来将产生一种创新的方式来概念化和执行数据-人工智能模型搜索和聚合。该项目的技术创新是创造了用于实体和关系提取以及实体链接的新技术。该项目还将为科学文献挖掘领域做出贡献。调查人员将创造新的技术来自动识别和编目公共人工智能数据和模型,以提高其可重用性。关键的见解是,如果没有研究论文本身,研究人工智能制品就缺乏必要的重用上下文。例如,论文描述了数据集的作用(例如,训练或测试),并指出模型是原始的还是用作基准。通过自动推断任务-数据-模型关系,该项目将增加向新任务建议文物的能力,从而缩短相关文物搜索的时间。在教育方面,这项工作将包括对研究生和本科生的培训,特别是鼓励女性和代表性不足的群体参与研究工作和课程开发。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DMDD: A Large-Scale Dataset for Dataset Mentions Detection
- DOI:10.1162/tacl_a_00592
- 发表时间:2023-05
- 期刊:
- 影响因子:10.9
- 作者:Huitong Pan;Qi Zhang;E. Dragut;Cornelia Caragea;Longin Jan Latecki
- 通讯作者:Huitong Pan;Qi Zhang;E. Dragut;Cornelia Caragea;Longin Jan Latecki
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eduard Dragut其他文献
Eduard Dragut的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eduard Dragut', 18)}}的其他基金
Proto-OKN Theme 1: Knowledge Graph to Support Evaluation and Development of Climate Models
Proto-OKN 主题 1:支持气候模型评估和开发的知识图
- 批准号:
2333789 - 财政年份:2023
- 资助金额:
$ 67万 - 项目类别:
Cooperative Agreement
NSF Convergence Accelerator Track F: America's Fourth Estate at Risk: A System for Mapping the (Local) Journalism Life Cycle to Rebuild the Nation's News Trust
NSF 融合加速器轨道 F:美国第四产业面临风险:绘制(本地)新闻生命周期图以重建国家新闻信任的系统
- 批准号:
2137846 - 财政年份:2021
- 资助金额:
$ 67万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Collective Mining of Vertical Social Communities
BIGDATA:F:协同研究:垂直社交社区的集体挖掘
- 批准号:
1838145 - 财政年份:2018
- 资助金额:
$ 67万 - 项目类别:
Standard Grant
BIGDATA: Collaborative Research: F: Streaming Architecture for Continuous Entity Linking in Social Media
BIGDATA:协作研究:F:社交媒体中连续实体链接的流架构
- 批准号:
1546480 - 财政年份:2016
- 资助金额:
$ 67万 - 项目类别:
Standard Grant
相似海外基金
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
- 批准号:
2420691 - 财政年份:2024
- 资助金额:
$ 67万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
- 批准号:
2312865 - 财政年份:2023
- 资助金额:
$ 67万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312932 - 财政年份:2023
- 资助金额:
$ 67万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2415562 - 财政年份:2023
- 资助金额:
$ 67万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
- 批准号:
2348169 - 财政年份:2023
- 资助金额:
$ 67万 - 项目类别:
Continuing Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
- 批准号:
2312501 - 财政年份:2023
- 资助金额:
$ 67万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Knowledge discovery from highly heterogeneous, sparse and private data in biomedical informatics
合作研究:III:中:生物医学信息学中高度异构、稀疏和私有数据的知识发现
- 批准号:
2312862 - 财政年份:2023
- 资助金额:
$ 67万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312930 - 财政年份:2023
- 资助金额:
$ 67万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
- 批准号:
2347592 - 财政年份:2023
- 资助金额:
$ 67万 - 项目类别:
Standard Grant
Collaborative Research: IIS: III: MEDIUM: Learning Protein-ish: Foundational Insight on Protein Language Models for Better Understanding, Democratized Access, and Discovery
协作研究:IIS:III:中等:学习蛋白质:对蛋白质语言模型的基础洞察,以更好地理解、民主化访问和发现
- 批准号:
2310113 - 财政年份:2023
- 资助金额:
$ 67万 - 项目类别:
Standard Grant














{{item.name}}会员




