III: Medium: Collaborative Research: Principled Uncertainty Quantification in Deep Learning Models for Time Series Analysis
III:媒介:协作研究:用于时间序列分析的深度学习模型中的原则性不确定性量化
基本信息
- 批准号:2107200
- 负责人:
- 金额:$ 32.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Time series data are ubiquitous in modern science and engineering. An unprecedented amount is being collected in diverse applications such as healthcare systems, the Web, cyber network monitoring, self-driving cars, and Internet-of-Things services. While deep learning has achieved enormous success in time series predictive analysis, a key bottleneck of such models is that they are ignorant about the uncertainties in their predictions. A consequence is that they can produce wildly wrong predictions without noticing---this will lead to misguided decisions, which can be catastrophic in life-critical applications. This project aims to remedy this issue and advance deep learning towards more trustworthy time series analysis. The project will enable principled deep learning models for uncertainty-aware and reliable time series regression and classification without sacrificing their predictive power. Research findings from the project will be incorporated into graduate-level classes, tutorials, and workshops to bring multiple stakeholders and domain scientists together.The technical aims of this project are divided into three thrusts. First, the project will develop novel techniques bridging deep sequential models (e.g., recurrent networks, transformers) with Gaussian processes to quantify uncertainty in the functional space. Second, the project will explore how to learn calibrated deep sequential models and how to further decouple different sources of uncertainties to understand where a model's predictive uncertainty comes from. Third, the project will harness uncertainty to improve the reliability and efficiency of time series predictive systems. These techniques will enjoy the representation power of deep neural networks for modeling complex temporal dependencies in time-series data, while providing principled methodologies for quantifying and leveraging uncertainty for robustness and performance. The developed new models, algorithms, and techniques will be deployed in two important applications for times series analysis: 1) public health monitoring and forecasting, and 2) real-time analysis for mobile sensing time series data. The developed tools will also be open-sourced for trustworthy time series analysis that can benefit many other applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
时间序列数据在现代科学和工程中无处不在。在医疗保健系统、Web、网络监控、自动驾驶汽车和物联网服务等各种应用中收集的数据量前所未有。虽然深度学习在时间序列预测分析方面取得了巨大的成功,但这类模型的一个关键瓶颈是它们对预测中的不确定性一无所知。其后果是,他们可能会在没有注意到的情况下做出错误的预测--这将导致错误的决策,这在生命攸关的应用中可能是灾难性的。该项目旨在解决这个问题,并将深度学习推向更值得信赖的时间序列分析。该项目将使有原则的深度学习模型能够实现不确定性感知和可靠的时间序列回归和分类,而不会牺牲其预测能力。该项目的研究成果将被纳入研究生课程,教程和研讨会,将多个利益相关者和领域科学家聚集在一起。该项目的技术目标分为三个方面。首先,该项目将开发桥接深度序列模型的新技术(例如,递归网络,变压器)与高斯过程来量化函数空间中的不确定性。其次,该项目将探索如何学习校准的深度序列模型,以及如何进一步解耦不同的不确定性来源,以了解模型的预测不确定性来自何处。第三,该项目将利用不确定性来提高时间序列预测系统的可靠性和效率。这些技术将享受深度神经网络的表示能力,用于对时间序列数据中的复杂时间依赖性进行建模,同时提供量化和利用不确定性以实现鲁棒性和性能的原则性方法。开发的新模型,算法和技术将部署在两个重要的应用程序的时间序列分析:1)公共卫生监测和预测,2)实时分析的移动的传感时间序列数据。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exploring Spherical Autoencoder for Spherical Video Content Processing
- DOI:10.1145/3503161.3548364
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Jin Zhou;Na Li;Yao Liu-;Shuochao Yao;Songqing Chen
- 通讯作者:Jin Zhou;Na Li;Yao Liu-;Shuochao Yao;Songqing Chen
Semi-supervised Hypergraph Node Classification on Hypergraph Line Expansion
- DOI:10.1145/3511808.3557447
- 发表时间:2020-05
- 期刊:
- 影响因子:0
- 作者:Chaoqi Yang;Ruijie Wang;Shuochao Yao;T. Abdelzaher
- 通讯作者:Chaoqi Yang;Ruijie Wang;Shuochao Yao;T. Abdelzaher
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shuochao Yao其他文献
VibeBin
维贝宾
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Yiran Zhao;Shuochao Yao;Shen Li;Shaohan Hu;Huajie Shao;T. Abdelzaher - 通讯作者:
T. Abdelzaher
Digital Breast Tomosynthesis Overview of the evidence and issues for its use in screening for breast cancer
数字乳腺断层合成用于乳腺癌筛查的证据和问题概述
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Yiran Zhao;Shuochao Yao;Shen Li;Shaohan Hu;Huajie Shao;T. Abdelzaher - 通讯作者:
T. Abdelzaher
CrossRoI
交叉滚动
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Hongpeng Guo;Shuochao Yao;Zhe Yang;Qian Zhou;Klara Nahrstedt - 通讯作者:
Klara Nahrstedt
Social Signal Processing for Real-Time Situational Understanding: A Vision and Approach
用于实时情境理解的社交信号处理:愿景和方法
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Kasthuri Jayarajah;Shuochao Yao;Raghava Mutharaju;Archan Misra;Geeth de Mel;Julie Skipper;T. Abdelzaher;Michael A. Kolodny - 通讯作者:
Michael A. Kolodny
Dependable machine intelligence at the tactical edge
战术优势的可靠机器智能
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Archan Misra;Kasthuri Jayarajah;Dulanga Weerakoon;Randy Tandriansyah;Shuochao Yao;T. Abdelzaher - 通讯作者:
T. Abdelzaher
Shuochao Yao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shuochao Yao', 18)}}的其他基金
Collaborative Research: CPS: Medium: Real-time Criticality-Aware Neural Networks for Mission-critical Cyber-Physical Systems
合作研究:CPS:中:用于关键任务网络物理系统的实时关键性感知神经网络
- 批准号:
2038658 - 财政年份:2021
- 资助金额:
$ 32.59万 - 项目类别:
Standard Grant
相似海外基金
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
- 批准号:
2420691 - 财政年份:2024
- 资助金额:
$ 32.59万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
- 批准号:
2312865 - 财政年份:2023
- 资助金额:
$ 32.59万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312932 - 财政年份:2023
- 资助金额:
$ 32.59万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
- 批准号:
2348169 - 财政年份:2023
- 资助金额:
$ 32.59万 - 项目类别:
Continuing Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2415562 - 财政年份:2023
- 资助金额:
$ 32.59万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
- 批准号:
2347592 - 财政年份:2023
- 资助金额:
$ 32.59万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Knowledge discovery from highly heterogeneous, sparse and private data in biomedical informatics
合作研究:III:中:生物医学信息学中高度异构、稀疏和私有数据的知识发现
- 批准号:
2312862 - 财政年份:2023
- 资助金额:
$ 32.59万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312930 - 财政年份:2023
- 资助金额:
$ 32.59万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
- 批准号:
2312501 - 财政年份:2023
- 资助金额:
$ 32.59万 - 项目类别:
Standard Grant
Collaborative Research: IIS: III: MEDIUM: Learning Protein-ish: Foundational Insight on Protein Language Models for Better Understanding, Democratized Access, and Discovery
协作研究:IIS:III:中等:学习蛋白质:对蛋白质语言模型的基础洞察,以更好地理解、民主化访问和发现
- 批准号:
2310113 - 财政年份:2023
- 资助金额:
$ 32.59万 - 项目类别:
Standard Grant