Collaborative Research: CNS Core: Medium: Information Freshness in Scalable and Energy Constrained Machine to Machine Wireless Networks

合作研究:CNS 核心:中:可扩展且能量受限的机器对机器无线网络中的信息新鲜度

基本信息

  • 批准号:
    2107363
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

With the ever increasing importance of connected devices in smart home, digital healthcare, precision agriculture, smart city, environment and natural disaster monitoring, etc., it is of paramount interest to design the next generation wireless network architecture that can simultaneously support better services while accommodating sharply exponential growth rates of deployment far exceeding the addition of newly available bandwidth. This project will design and analyze new near-optimal machine-to-machine (M2M) network protocols based on the key concept that the quality of service of the machine-based traffic is largely determined by how timely or how fresh the information can be delivered to the destination, instead of the sheer quantity of the delivered messages. With this new shift of design paradigm to information freshness optimization, this project develops novel tools and techniques to quantify and improve the information freshness while meeting the practical requirements of wireless M2M networks, especially on the scalability, energy efficiency, and low-complexity autonomous distributed solutions. The results would significantly advance the state-of-the-art knowledge on M2M wireless network architectures, and propel robust and continuous development of M2M applications by minimizing the battery consumption, increasing the network capacity, and improving the temporal “connectedness” among the smart devices, a critical step forward when realizing the societal impact of Internet-of-Things. To further broaden the participation in network science and computing, the project will implement multiple inclusive mechanisms that increase leadership and participation from women and under-represented groups in a national high-profile annual research workshop (IMACCS) that is being held at the Ohio State University. Several important technical challenges of M2M information freshness optimization will be addressed in this project, including (i) Optimal network coordination when any back and forth message always experiences some random delay, which results in delayed command-&-response in every aspect of the network operations. (ii) Lack of distributional knowledge. Since the delay distributions in practical networks are difficult to estimate and constantly change over time, any practically viable solution must automatically adapt to the underlying unknown delay distributions. (iii) Energy efficiency. Many smart devices are battery limited, which prompts the need for energy-centric, low-complexity distributed network protocol designs. This project will address the above key challenges and develop the analytical foundations for controlling and optimizing information freshness in wireless M2M networks, resulting in fully distributed provably efficient algorithms and protocols that will be extensively evaluated on a large-scale fully programmable 5G wireless network testbed at Rice University.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着互联设备在智能家居、数字医疗、精准农业、智慧城市、环境和自然灾害监测等领域的重要性与日俱增,设计下一代无线网络体系结构至关重要,该体系结构能够同时支持更好的服务,同时适应部署的急剧指数增长速度,远远超过新增加的可用带宽。该项目将基于这样一个关键概念设计和分析新的近乎最佳的机器到机器(M2M)网络协议,即基于机器的流量的服务质量在很大程度上取决于将信息传递到目的地的及时性或新鲜度,而不是所传递的消息的绝对数量。随着设计范式向信息新鲜度优化的新转变,该项目开发了新的工具和技术来量化和提高信息新鲜度,同时满足无线M2M网络的实际需求,特别是在可扩展性、能效和低复杂性的自主分布式解决方案方面。研究结果将显著促进对M2M无线网络架构的最先进知识,并通过最大限度地减少电池消耗、增加网络容量和改善智能设备之间的临时“连接性”,推动M2M应用的强劲和持续发展,这是实现物联网社会影响的关键一步。为了进一步扩大对网络科学和计算的参与,该项目将实施多种包容性机制,增加妇女和代表性不足群体的领导力和参与正在俄亥俄州立大学举行的全国知名年度研究研讨会(IMACCS)。本项目将解决M2M信息新鲜度优化的几个重要技术挑战,包括(I)当任何来回消息总是经历一些随机延迟时的最佳网络协调,这导致网络操作的各个方面的命令响应延迟。(Ii)缺乏分布知识。由于实际网络中的时延分布很难估计,并且随着时间的推移不断变化,任何实际可行的解决方案都必须自动适应潜在的未知时延分布。(三)能源效率。许多智能设备电池有限,这就需要以能源为中心、低复杂性的分布式网络协议设计。该项目将解决上述关键挑战,并为控制和优化无线M2M网络中的信息新鲜度开发分析基础,从而产生可证明有效的完全分布式算法和协议,这些算法和协议将在莱斯大学测试的大规模完全可编程5G无线网络上进行广泛评估。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Age-Optimal Low-Power Status Update over Time-Correlated Fading Channel
Optimizing Sampling for Data Freshness: Unreliable Transmissions with Random Two-way Delay
Coded Caching With Full Heterogeneity: Exact Capacity of the Two-User/Two-File Case
  • DOI:
    10.1109/tit.2022.3181411
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Chih-Hua Chang;B. Peleato;Chih-Chun Wang
  • 通讯作者:
    Chih-Hua Chang;B. Peleato;Chih-Chun Wang
Battle between Rate and Error in Minimizing Age of Information
最小化信息时代的速度与错误之间的斗争
  • DOI:
    10.1145/3466772.3467041
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yao, Guidan;Bedewy, Ahmed M.;Shroff, Ness B.
  • 通讯作者:
    Shroff, Ness B.
Unifying AoI Minimization and Remote Estimation—Optimal Sensor/Controller Coordination With Random Two-Way Delay
统一 AoI 最小化和远程估计 — 具有随机双向延迟的最佳传感器/控制器协调
  • DOI:
    10.1109/tnet.2021.3111495
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tsai, Cho-Hsin;Wang, Chih-Chun
  • 通讯作者:
    Wang, Chih-Chun
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chih-Chun Wang其他文献

On the Capacity of Wireless 1-Hop Intersession Network Coding—A Broadcast Packet Erasure Channel Approach
Side Information in Bandit Problems & Low-Density Parity-Check Codes for Non-Symmetric Channels
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Chih-Chun Wang
  • 通讯作者:
    Chih-Chun Wang
On the Capacity of 1-to-K Broadcast Packet Erasure Channels With Channel Output Feedback
  • DOI:
    10.1109/tit.2011.2173723
  • 发表时间:
    2012-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chih-Chun Wang
  • 通讯作者:
    Chih-Chun Wang
Abstracts of the Hans Selye Symposium on Neuroendocrinology and Stress
  • DOI:
    10.1007/bf01537288
  • 发表时间:
    1989-08-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Hassan Amjad;H. A. Jafary;H. K. Bakke;R. Murison;T. F. Burks;Julia M. Peterson;C. H. Cho;M. W. L. Koq;C. W. Oqle;S. Evangelista;D. Renzi;A. Meli;L. Fändriks;G. Flemström;A. Garner;H. Gregory;S. E. Hampson;A. M. Stanier;I. R. Willshire;J. A. Young;J. Gilloteaux;B. J. Pomerants;T. R. Kelly;R. Menu;G. Pelletier;J. J. Vanderhaeghen;G. B. Glavin;R. H. K. Gompertz;R. A. Goodlad;N. A. Wright;A. Michalowski;J. H. Baron;R. C. N. Williamson;R. T. Mathie;A. Michalowskit;P. Guth;W. R. Hanson;K. A. Houseman;P. W. Collins;P. G. Henke;D. E. Hernandez;C. H. Walker;B. G. Xue;N. Fitts;A. B. Zhao;J. E. Valenzuela;G. A. Mason;P. Holzer;I. Japundžić;E. Levi;L. J. Rakić;M. Japundžić;G. L. Kauffman;M. Kitajima;S. J. Konturek;A. Krantis;A. McKay;L. Duchesne;H. Kuwayama;Y. Matsuo;G. L. Eastwood;Jun-Li Liu;Xi-Jin Zhang;Chih-Chun Wang;De-Jia Yao;Jin Huang;Ning Wei;G. MacOueen;J. Bienenstock;M. H. Perdue;T. A. Miller;G. S. Smith;M. Stanislawska;T. M. Phan;J. M. Henagan;R. E. Morales;B. Johnson;S. Szabo;G. P. Morris;Gy. Mózsik;á. Király;M. Garamszegi;L. Nagy;G. SütŐ;Gy. Tóth;á. Vincze;T. Jávor;Y. Osumi;Y. Okuma;K. Yokotani;M. Nagata;W. P. Paré;E. Redei;P. K. Rangachari;T. Prior;R. A. Bell;Fergus Shanahan;P. Sikirić;I. Rotkvić;S. Miše;M. Petek;R. Ručman;S. Seiwerth;J. F. Marshall;J. L. Neumeyer;Y. Taché;John L. Wallace;H. Weiner;L. Xing;J. King;R. Bryan;T. Yabana;Y. Kondo;A. Yachi;R. V. Yagci;N. Alptekin;W. J. Rossowski;A. Brown;D. H. Coy;A. Ertan;A. O. Yeginsu;R. A. Hammer;A. Arimura;W. -R. Zhang;A. Robert;Z. T. Zheng;Z. Y. Wang;L. Zhang;C. W. Huang;L. Bertók;P. Vattay;K. Kato;J. Folkman;F. Pozo;A. Fueyo;M. M. Esteban;B. Marín;J. M. Rojo-Ortega
  • 通讯作者:
    J. M. Rojo-Ortega
Resilience as a moderator of the effects of types of workplace bullying and job performance
  • DOI:
    10.1186/s12912-025-02888-2
  • 发表时间:
    2025-03-06
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Yu-Chia Chang;Shi-Ting Huang;Chih-Chun Wang;Cheng-Chia Yang
  • 通讯作者:
    Cheng-Chia Yang

Chih-Chun Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chih-Chun Wang', 18)}}的其他基金

CIF: Small: Fundamental Communication Latency Limits Beyond the Traditional Block-Coding Architecture
CIF:小:超越传统块编码架构的基本通信延迟限制
  • 批准号:
    2309887
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Travel: CIF: Student Travel Support for the 2023 IEEE International Symposium on Information Theory
旅行:CIF:2023 年 IEEE 国际信息论研讨会的学生旅行支持
  • 批准号:
    2310925
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CIF: Small: Timing Optimization Over Random Network Asynchrony - Theory And Distributed Algorithms
CIF:小:随机网络异步的时序优化 - 理论和分布式算法
  • 批准号:
    2008527
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CIF: Small: Collaborative Research: Perishable Network Information Flow
CIF:小型:协作研究:易腐烂的网络信息流
  • 批准号:
    1618475
  • 财政年份:
    2016
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Physical Dynamics Aware Coding for Communications in Cyber Physical Systems: Analysis, Algorithms and Implementation
协作研究:网络物理系统中通信的物理动力学感知编码:分析、算法和实现
  • 批准号:
    1407603
  • 财政年份:
    2014
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CIF: Small: Network Information Theory Meets Network Optimization: Optimal Linear Network Coding for Packet Erasure Networks
CIF:小型:网络信息理论与网络优化的结合:数据包擦除网络的最优线性网络编码
  • 批准号:
    1422997
  • 财政年份:
    2014
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CAREER: Next Generation Network Coding: Distributed Design Via Coded Feedback
职业:下一代网络编码:通过编码反馈进行分布式设计
  • 批准号:
    0845968
  • 财政年份:
    2009
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
NeTS: Medium: Collaborative Research: Unifying Network Coding and Cross-Layer Optimization for Wireless Mesh Networks: From Theory to Distributed Algorithms to Implementation
NeTS:媒介:协作研究:无线网状网络的统一网络编码和跨层优化:从理论到分布式算法再到实现
  • 批准号:
    0905331
  • 财政年份:
    2009
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
  • 批准号:
    2345339
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2230945
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
  • 批准号:
    2225578
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
  • 批准号:
    2406598
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
  • 批准号:
    2418188
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
  • 批准号:
    2242503
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
  • 批准号:
    2343959
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
  • 批准号:
    2343863
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2341378
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Innovating Volumetric Video Streaming with Motion Forecasting, Intelligent Upsampling, and QoE Modeling
合作研究:CNS 核心:中:通过运动预测、智能上采样和 QoE 建模创新体积视频流
  • 批准号:
    2409008
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了