III: Medium: Collaborative Research: MUDL: Multidimensional Uncertainty-Aware Deep Learning Framework
III:媒介:协作研究:MUDL:多维不确定性感知深度学习框架
基本信息
- 批准号:2107451
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
People encounter serious hurdles in finding effective decision-making solutions to real world problems because of uncertainty from a lack of information, conflicting information, and/or unsure observations. Critical safety concerns have been consistently highlighted because how to interpret this uncertainty has not been carefully investigated. If the uncertainty is misinterpreted, this can result in unnecessary risk. For example, a self-driving autonomous car can misdetect a human in the road. An artificial intelligence-based medical assistant may misdiagnose cancer as a benign tumor. Further, a phishing email can be detected as a normal email. The consequences of all these misdetections or misclassifications caused by different types of uncertainty adds risk and potential adverse events. Artificial intelligence (AI) researchers have actively explored how to solve various decision-making problems under uncertainty. However, no prior research has looked into how different approaches of studying uncertainty in AI can leverage each other. This project studies how to measure different causes of uncertainty and use them to solve diverse decision-making problems more effectively. This project can help develop trustworthy AI algorithms that can be used in many real world decision-making problems. In addition, this project is highly transdisciplinary so that it can encourage broader, newer, and more diverse approaches. To magnify the impact of this project in research and education, this project leverages multicultural, diversity, and STEM programs for students with diverse backgrounds and under-represented populations. This project also includes seminar talks, workshops, short courses, and/or research projects for high school and community college students. This project aims to develop a suite of deep learning (DL) techniques by considering multiple types of uncertainties caused by different root causes and employ them to maximize the effectiveness of decision-making in the presence of highly intelligent, adversarial attacks. This project makes a synergistic but transformative research effort to study: (1) how different types of uncertainties can be quantified based on belief theory; (2) how the estimates of different types of uncertainties can be considered in DL-based approaches; and (3) how multiple types of uncertainties influence the effectiveness and efficiency of decision-making in high-dimensional, complex problems. This project advances the state-of-the-art research by performing the following: (1) Proposing a scalable, robust unified DL-based framework to effectively infer predictive multidimensional uncertainty caused by heterogeneous root causes in adversarial environments. (2) Dealing with multidimensional uncertainty based on neural networks. (3) Enhancing both decision effectiveness and efficiency by considering multidimensional uncertainty-aware designs. (4) Testing proposed approaches to ensure their robustness in the presence of intelligent adversarial attackers with advanced deception tactics based on both simulation models and visualization tools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人们在寻找有效的决策解决方案真实的世界的问题,因为缺乏信息的不确定性,相互矛盾的信息,和/或不确定的意见遇到了严重的障碍。关键的安全性问题一直被强调,因为如何解释这种不确定性还没有仔细研究。如果不确定性被误解,这可能会导致不必要的风险。例如,一辆自动驾驶汽车可能会错误地检测到路上的人。基于人工智能的医疗助理可能会将癌症误诊为良性肿瘤。此外,网络钓鱼电子邮件可以被检测为正常电子邮件。由不同类型的不确定性引起的所有这些错误检测或错误分类的后果增加了风险和潜在的不良事件。人工智能(AI)研究人员积极探索如何解决不确定性下的各种决策问题。然而,之前的研究还没有研究过研究人工智能中不确定性的不同方法如何相互利用。该项目研究如何衡量不确定性的不同原因,并利用它们更有效地解决各种决策问题。该项目可以帮助开发可信赖的AI算法,可用于许多真实的世界决策问题。此外,该项目是高度跨学科的,因此它可以鼓励更广泛,更新和更多样化的方法。为了扩大该项目在研究和教育方面的影响,该项目利用多元文化,多样性和STEM计划为具有不同背景和代表性不足的学生提供服务。该项目还包括研讨会讲座,讲习班,短期课程,和/或高中和社区大学学生的研究项目。该项目旨在通过考虑由不同根本原因引起的多种类型的不确定性来开发一套深度学习(DL)技术,并利用它们在存在高度智能的对抗性攻击的情况下最大限度地提高决策的有效性。该项目进行了协同但变革性的研究工作,研究:(1)如何基于信念理论量化不同类型的不确定性;(2)如何在基于DL的方法中考虑不同类型的不确定性的估计;以及(3)多种类型的不确定性如何影响高维复杂问题决策的有效性和效率。该项目通过执行以下内容推进了最先进的研究:(1)提出了一个可扩展的,健壮的统一的基于DL的框架,以有效地推断在对抗环境中由异构根本原因引起的预测多维不确定性。(2)基于神经网络的多维不确定性处理。(3)通过考虑多维不确定性感知设计提高决策有效性和效率。(4)测试提出的方法,以确保其鲁棒性存在的智能对抗性攻击者与先进的欺骗战术基于仿真模型和可视化工具。该奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi-Resolution Analysis with Visualization to Determine Network Attack Patterns
- DOI:10.3390/app13063792
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:D. Jeong;Bong-Keun Jeong;Soo-Yeon Ji
- 通讯作者:D. Jeong;Bong-Keun Jeong;Soo-Yeon Ji
Designing a supervised feature selection technique for mixed attribute data analysis
- DOI:10.1016/j.mlwa.2022.100431
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:D. Jeong;Bong-Keun Jeong;Nandi O. Leslie;Charles A. Kamhoua;Soo-Yeon Ji
- 通讯作者:D. Jeong;Bong-Keun Jeong;Nandi O. Leslie;Charles A. Kamhoua;Soo-Yeon Ji
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dong Hyun Jeong其他文献
Dong Hyun Jeong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
- 批准号:
2420691 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
- 批准号:
2312865 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312932 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
- 批准号:
2348169 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2415562 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
- 批准号:
2347592 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Knowledge discovery from highly heterogeneous, sparse and private data in biomedical informatics
合作研究:III:中:生物医学信息学中高度异构、稀疏和私有数据的知识发现
- 批准号:
2312862 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312930 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
- 批准号:
2312501 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: IIS: III: MEDIUM: Learning Protein-ish: Foundational Insight on Protein Language Models for Better Understanding, Democratized Access, and Discovery
协作研究:IIS:III:中等:学习蛋白质:对蛋白质语言模型的基础洞察,以更好地理解、民主化访问和发现
- 批准号:
2310113 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant